The sulfidation process of sterling silver in different corrosive environments: impact of the process on the surface films formed and consequences for the conservation-restoration community

Springer Science and Business Media LLC - Tập 3 - Trang 1-15 - 2015
Patrick Storme1, Olivier Schalm1, Rita Wiesinger2
1University of Antwerp, Conservation Studies, Antwerp, Belgium
2Institute of Science and Technology in Art, Academy of Fine Arts Vienna, Vienna, Austria

Tóm tắt

Precious objects made of silver and/or its alloys tarnish and become black when exposed to ambient atmospheres containing moisture and ppb-amounts of H2S. Such objects usually contain small but variable amounts of copper as alloying constituent and this affects the corrosion process due to a preferential oxidation of copper. However the visual appearance of the formed tarnishing layers on different types of silver alloys is very similar. Therefore, conservators-restorers are confronted with the problem that in some cases certain cleaning techniques are very effective while in other similar cases the removal of tarnishing layers is unsatisfactory. Since cleaning experiments are not allowed on genuine objects, many investigations use artificially corroded dummies instead. In order to evaluate the representativity and reproducibility of this often used methodology, differences in morphology, microstructure and composition of the sulfide layers on sterling silver generated by different sulfidation methods were analysed. Sterling silver samples were artificially aged in five different environments. The samples exposed to uncontrolled ambient air at different locations (e.g. residential and laboratory environments) showed different corrosion rates and corrosion colours. Three accelerated ageing methods were executed in a gaseous or liquid environment under controlled conditions. These tests showed different results in morphology, microstructure, composition, thickness and the interface between bulk and corrosion layer. A first accelerated sulfidation procedure in a Na2S solution alternated with exposure to air, resulted in a fast corrosion rate and an even corrosion layer formation with several S-species. A second series of sulfidation in a controlled gas environment of H2S and SO2 developed a thin but uneven corrosion layer, mainly consisting of oxides. A third corrosion methodology used was based on the thioacetamide method. This resulted in an even and relative thick corrosion layer, comparable to the Na2S/aeration sulfidation system. However, the interface between the corrosion layer and the bulk is importantly different, showing severe voids. The corrosion layers generated by five different experimental sulfidation series on identical prepared sterling silver coupons were clearly different from each other. Analyses demonstrated that the composition and microstructure of the corrosion layers were strongly dependent on the sulfidation method used and copper was found to be an important element present in all sulfide layers analysed. Therefore, artificially corroded sterling silver is not necessarily representative for naturally tarnished historical objects and the extrapolation of the cleaning results obtained on dummies to historical objects must be performed with care.

Tài liệu tham khảo

Costa V (2001) The deterioration of silver alloys and some aspects of their conservation. Rev Conserv 2:19–23 Degrigny C, Tanguy E, Le Gall R, Zafiropulos V, Marakis G (2003) Laser cleaning of tarnished silver and copper threads in museum textiles. J Cult Herit 4:152s–156s Costa V (2002) Electrochemistry as a conservation tool: an overview. In: Townsend JH, Eremin K, Adriaens A (eds) Conservation Science. 2002. Archetype, London Patelli A, Favaro M, Simon S, Storme P, Scopece P, Kamenova V et al (2012) PANNA Project—Plasma and Nano for New Age Soft Conservation. Development of a Full-Life Protocol for the Conservation of Cultural Heritage. In: Progress in Cultural Heritage Preservation, Lecture Notes, in Computer Science, vol 7616. pp 793–800 Aibéo C, Egel E, Patelli A, Favaro M, De Voeght F, Storme P et al (2012) EU-PANNA Project: Development of a portable plasma torch for cleaning multi surfaces and coating deposition. In: Proceedings of 2nd European Workshop on Cultural Heritage Preservation (EWCHP), Kjeller, Oslo, 24–25 September 2012 ICOMOS (2014) International Charter for the conservation and restoration of monuments and sites (The Venice Charter 1965). http://www.icomos.org/Charters/venice_e.pdf. Accessed 29 Sep 2014 E.C.C.O. PROFESSIONAL GUIDELINES (2002) Article 9. Promoted by the European Confederation of Conservator-Restorers’ Organisations and adopted by its General Assembly, Brussels Novakovic J, Vassiliou P, Georgiza E (2013) Electrochemical cleaning of artificially tarnished silver. Int J Electrochem Sci 8:7223–7232 Grassini S, Angelini E, Mao Y, Novakovic J, Vassiliou P (2011) Aesthetic coatings for silver based alloys with improved protection efficiency. Prog Org Coat 72:131–137 Ingo GM, Angelini E, Riccucci C, de Caro T, Mezzi A, Faraldi F et al (2015) Indoor environmental corrosion of Ag-based alloys in the Egyptian Museum (Cairo, Egypt). Appl Surf Sci 326:222–235 Grøntoft T, Odlyha M, Mottner P, Dahlin E, Lopez-Aparicio S, Jakiela S et al (2010) Pollution monitoring by dosimetry and passive diffusion sampling for evaluation of environmental conditions for paintings in microclimate frames. J Cult Herit 11:411–419 Oesch S, Faller M (1997) Environmental effects on materials: the effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. Corros Sci 39:1505–1530 McTigue PT, Young DJ (1975) The phototarnishing of silver and copper. Part II. Oxid Met 9:117–119 Salmeron M, Bluhm H, Tatarkhanov N, Ketteler G, Shimizu TK, Mugarza A et al (2009) Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups. Faraday Discuss 141:221–229 Scott DA (1991) Metallography and microstructure of ancient and historic metals. The J. Paul Getty Trust, Los Angeles Ankersmit HA, Tennent NH, Watts SF (2005) Hydrogen sulfide and carbonyl sulfide in the museum environment—Part 1. Atmos Environ 39:695–707 Kim H (2003) Corrosion process of silver in environments containing 0.1 ppm H2S and 1.2 ppm NO2. Mater Corros 54:243–250 Barber M, Sharpe P, Vickerman JC (1974) An investigation of the SO2/Ag surface reaction using secondary ion mass spectrometry. Chem Phys Lett 27:436–438 Czandema AW (1964) The adsorption of oxygen on silver. J Phys Chem 68:2765–2771 Graedel TE, Franey JP, Gualtieri GJ, Kammlott GW, Malm DL (1985) On the mechanism of silver and copper sulfidation by atmospheric H2S and OCS. Corros Sci 25:1163–1180 Pope D, Gibbens HR, Moss RL (1968) The tarnishing of silver at naturally occurring H2S and SO2 levels. Corros Sci 8:883–887 Tournas AD, Potts AW (1995) Surface reaction of SO2 with machined (polycrystalline) Zn, Cd, Cu and Ag surfaces studied by He I/II photoelectron spectroscopy. J Electron Spectros Relat Phenom 73:231–238 Bao X, Muhler M, Pettinger B, Uchida Y, Lehmpfuhl G, Schlögl R et al (1995) The effect of water on the formation of strongly bound oxygen on silver surfaces. Catal Lett 32:171–183 Franey JP, Kammlott GW, Graedel TE (1985) The corrosion of silver by atmospheric sulfurous gases. Corros Sci 25:133–143 Leygraf C, Graedel TE (2000) Atmospheric corrosion. Wiley, New York, p 368 Liang D, Allen HC, Frankel GS, Chen ZY, Kelly RG, Wu Y et al (2010) Effects of sodium chloride particles, ozone, UV, and relative humidity on atmospheric corrosion of silver. J Electrochem Soc 157:C146–C156 Rice DW, Peterson P, Rigby EB, Phipps PBP, Cappell PJ, Tremoureux R (1981) Atmospheric corrosion of copper and silver. J Electrochem Soc 128:275–284 Camuffo D, Brimblecombe P, Van Grieken R, Busse HJ, Sturaro G, Valentino A et al (1999) Indoor air quality at the Correr museum, Venice, Italy. Sci Total Environ 236(1–3):135–152 Scott DA (2011) Ancient metals: microstructure and metallurgy. Copper and copper alloys, vol 1. Conservation Science Press, Los Angeles Theophilus (1979) On divers arts. Facsimili and annotated print on the 12th C. treatise, Dover publications Inc., New York Van Laer WV (1725) Weg-Wyzer voor aankoomende Goud en Zilversmeden. Fredrik Helm, Amsterdam Hammes J (1943) Goud Zilver Edelstenen. De Technische Boekhandel H. Stam, Amsterdam Untracht O (1982) Jewelry, concepts and technology. Doubleday & Company, Inc., New York, USA Wiesinger R, Schnöller J, Hutter H, Schreiner M, Kleber Ch (2009) About the formation of basic silver carbonate on silver surfaces—an in situ IRRAS Study. Open Corros J 2:96–104 Wiesinger R, Schreiner M, Kleber Ch (2010) Investigations of the interactions of CO2, O3 and UV light with silver surfaces by in situ IRRAS/QCM and ex situ TOF-SIMS. Appl Surf Sci 256:2735–2741 Van Langh R, Ankersmit H, Joosten I (2004) The delamination of silversulfide layers. In: Proceedings of Metal 2004, National Museum of Australia, Canberra ACT, pp 137–141 Linke R, Schreiner M, Demortier G, Alram M (2003) Determination of the provenance of medieval silver coins: potential and limitations of X-ray analysis using photons, electrons or protons. X-Ray Spectrom 32:373–380 Ankersmit H, Doménech Carbo A, Tennent N (2001) Tarnishing of silver: evaluation by colour measurements. In: Proceedings of the ICOM Committee for Conservation Metals Working Group, pp 157–166