The structure of superantigen complexed with TCR and MHC reveals novel insights into superantigenic T cell activation

Nature Communications - Tập 1 Số 1
Maria Saline1, Karin E. J. Rödström, Gerhard W. Fischer, Vladislav Orekhov, Göran Karlsson, Karin Lindkvist‐Petersson
11] Swedish NMR Centre at University of Gothenburg, Box 465, Göteborg S-405 30, Sweden. [2] Department of Chemistry, University of Gothenburg, Box 462, Göteborg S-405 30, Sweden. [3] Swedish NMR Centre at University of Gothenburg, Box 465, Göteborg S-405 30, Sweden. [4].

Tóm tắt

Từ khóa


Tài liệu tham khảo

Larkin, E. A., Carman, R. J., Krakauer, T. & Stiles, B. G. Staphylococcus aureus: the toxic presence of a pathogen extraordinaire. Curr. Med. Chem. 16, 4003–4019 (2009).

Marrack, P. & Kappler, J. The staphylococcal enterotoxins and their relatives. Science 248, 705–711 (1990).

Petersson, K., Forsberg, G. & Walse, B. Interplay between superantigens and immunoreceptors. Scand. J. Immunol. 59, 345–355 (2004).

Proft, T. & Fraser, J. D. Bacterial superantigens. Clin. Exp. Immunol. 133, 299–306 (2003).

Brouillard, J. N. et al. Crystal structure of the streptococcal superantigen SpeI and functional role of a novel loop domain in T cell activation by group V superantigens. J. Mol. Biol. 367, 925–934 (2007).

Petersson, K. et al. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. EMBO. J. 20, 3306–3312 (2001).

Fields, B. A. et al. Crystal structure of a T-cell receptor beta-chain complexed with a superantigen. Nature 384, 188–192 (1996).

Gunther, S. et al. A novel loop domain in superantigens extends their T cell receptor recognition site. J. Mol. Biol. 371, 210–221 (2007).

Li, H. et al. Three-dimensional structure of the complex between a T cell receptor beta chain and the superantigen staphylococcal enterotoxin B. Immunity 9, 807–816 (1998).

Moza, B. et al. Structural basis of T-cell specificity and activation by the bacterial superantigen TSST-1. EMBO. J. 26, 1187–1197 (2007).

Sundberg, E. J. et al. Structures of two streptococcal superantigens bound to TCR beta chains reveal diversity in the architecture of T cell signaling complexes. Structure (Camb) 10, 687–699 (2002).

Boulter, J. M. et al. Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng. 16, 707–711 (2003).

Frayser, M., Sato, A. K., Xu, L. & Stern, L. J. Empty and peptide-loaded class II major histocompatibility complex proteins produced by expression in Escherichia coli and folding in vitro. Protein Expr. Purif. 15, 105–114 (1999).

Li, Y. et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat. Biotechnol. 23, 349–354 (2005).

Nilsson, H., Bjork, P., Dohlsten, M. & Antonsson, P. Staphylococcal enterotoxin H displays unique MHC class II-binding properties. J. Immunol. 163, 6686–6693 (1999).

Hakansson, M. et al. The crystal structure of staphylococcal enterotoxin H: implications for binding properties to MHC class II and TcR molecules. J. Mol. Biol. 302, 527–537 (2000).

Stern, L. J. et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368, 215–221 (1994).

Stewart-Jones, G. B., McMichael, A. J., Bell, J. I., Stuart, D. I. & Jones, E. Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).

Fernandez, M. M., Guan, R., Swaminathan, C. P., Malchiodi, E. L. & Mariuzza, R. A. Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule. J. Biol. Chem. 281, 25356–25364 (2006).

Saline, M., Orekhov, V., Lindkvist-Petersson, K. & Karlsson, B. G. Backbone resonance assignment of Staphylococcal Enterotoxin H. Biomol. NMR Assign 4, 1–4 (2010).

Kappler, J. et al. V beta-specific stimulation of human T cells by staphylococcal toxins. Science 244, 811–813 (1989).

Fraser, J. D. & Proft, T. The bacterial superantigen and superantigen-like proteins. Immunol. Rev. 225, 226–243 (2008).

Petersson, K., Pettersson, H., Skartved, N. J., Walse, B. & Forsberg, G. Staphylococcal enterotoxin h induces valpha-specific expansion of T cells. J. Immunol. 170, 4148–4154 (2003).

Pumphrey, N. et al. Cutting edge: evidence of direct TCR alpha-chain interaction with superantigen. J. Immunol. 179, 2700–2704 (2007).

Wang, L. et al. Crystal structure of a complete ternary complex of TCR, superantigen and peptide-MHC. Nat. Struct. Mol. Biol. 14, 169–171 (2007).

Fraser, J. D. & Proft, T. The bacterial superantigen and superantigen-like proteins. Immunol. Rev. 225, 226–243 (2008).

Bravo de Alba, Y. et al. V alpha domain modulates the multiple topologies of mouse T cell receptor V beta20/staphylococcal enterotoxins A and E complexes. Eur. J. Immunol. 27, 92–99 (1997).

Seth, A. et al. Binary and ternary complexes between T-cell receptor, class II MHC and superantigen in vitro. Nature 369, 324–327 (1994).

Andersen, P. S. et al. Role of the T cell receptor alpha chain in stabilizing TCR-superantigen-MHC class II complexes. Immunity 10, 473–483 (1999).

Redpath, S., Alam, S. M., Lin, C. M., O'Rourke, A. M. & Gascoigne, N. R. Cutting edge: trimolecular interaction of TCR with MHC class II and bacterial superantigen shows a similar affinity to MHC: peptide ligands. J. Immunol. 163, 6–10 (1999).

Ozawa, T., Tajiri, K., Kishi, H. & Muraguchi, A. Comprehensive analysis of the functional TCR repertoire at the single-cell level. Biochem. Biophys. Res. Commun. 367, 820–825 (2008).

Bour, H. et al. T-cell repertoire analysis in chronic plaque psoriasis suggests an antigen-specific immune response. Hum. Immunol. 60, 665–676 (1999).

Conley, D. B. et al. Superantigens and chronic rhinosinusitis: skewing of T-cell receptor V beta-distributions in polyp-derived CD4+ and CD8+ T cells. Am. J. Rhinol. 20, 534–539 (2006).

Shiobara, N. et al. Bacterial superantigens and T cell receptor beta-chain-bearing T cells in the immunopathogenesis of ulcerative colitis. Clin. Exp. Immunol. 150, 13–21 (2007).

Leslie, A. G. W. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography (Daresbury Laboratory, 1992) No. 26.

Collaborative Computational Project, Number. The CCP4 suite: programs for protein crystallography. Acta. Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta. Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta. Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D Biol. Crystallogr. 54 (Part 5), 905–921 (1998).

Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

DeLano, W. L. The PyMOL Molecular Graphics System (Scientific LLC, 2008).

Pei, J., Kim, B. H. & Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008).

Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).