The structure of 2Zn pig insulin crystals at 1.5 Å resolution

The Royal Society - Tập 319 Số 1195 - Trang 369-456 - 1988
Edward N. Baker1, T.L. Blundell, J.F. Cutfield, S.M. Cutfield, E.J. Dodson, G.G. Dodson, Dorothy Crowfoot Hodgkin, Roderick E. Hubbard, C. D. Reynolds
1Department of Chemistry and Biochemistry, Massey University, Palmerston North, New Zealand

Tóm tắt

The paper describes the arrangement of the atoms within rhombohedral crystals of 2Zn pig insulin as seen in electron density maps calculated from X-ray data extending to 1.5 Å (1 Å = 10-10m = 10-1nm) at room temperature and refined toR= 0.153. The unit cell contains 2 zinc ions, 6 insulin molecules and about 3 x 283 water molecules. The atoms in the protein molecules appear well defined, 7 of the 102 side chains in the asymmetric unit have been assigned alternative disordered positions. The electron density over the water molecules has been interpreted in terms of 349 sites, 217 weighted 1.0, 126 weighted 0.5, 5 at 0.33 and 1 at 0.25 givingca. 282 molecules. The positions and contacts of all the residues belonging to the two A and B chains of the asymmetric unit are shown first and then details of their arrangement in the two insulin molecules, 1 and 2, which are different. The formation from these molecules of a compact dimer and the further aggregation of three dimers to form a hexamer around two zinc ions, follows. It appears that in the packing of the hexamers in the crystal there are conflicting influences; too-close contacts between histidine B5 residues in neighbouring hexamers are probably responsible for movements of atoms at the beginning of the A chain of one of the two molecules of the dimer that initiate movements in other parts, particularly near the end of the B chain. At every stage of the building of the protein structure, residues to chains of definite conformation, molecules, dimers, hexamers and crystals, we can trace the effect of the packing of like groups to like, aliphatic groups together, aromatic groups together, hydrogenbonded structures, positive and negative ions. Between the protein molecules, the water is distributed in cavities and channels that are continuous throughout the crystals. More than half the water molecules appear directly hydrogen bonded to protein atoms. These are generally in contact with other water molecules in chains and rings of increasing disorder, corresponding with their movement through the crystals. Within the established crystal structure we survey next the distribution of hydrogen bonds within the protein molecules and between water and protein and water and water; all but eight of the active atoms in the protein form at least one hydrogen bond. We follow with a discussion of the effect of different contacts on the observed thermal parameters and the possibility of correlating these with movements of the monomer, dimer or hexamer as a whole. The correlation seems best for molecule 1 in the dimer. Finally we examine the relation of the crystal structure as a whole to the biological activity of insulin. The large size of the insulin receptor makes it likely that when it combines to form the receptor complex, it makes a large number of contacts with the surface of the insulin molecule. Some of these points of contact, such as, for example, B24 and B25 phenylalanine, are suggested by the changes in biological activity observed when these residues are modified. The conformational changes in the insulin chains produced by crystal packing can be seen as a model for possible changes induced by insulin contacts with the receptor that eventually we may hope to discover if the insulin-receptor complex is crystallized.

Từ khóa


Tài liệu tham khảo

Abel J . J . 1 9 2 6 Crystalline insulin. P r o c . n a t n . A c a d . S c i . U . S . A . 12 132-135.

Adams M. J. Blundell T. L. Dodson E. J . Dodson G. G. Vijayan M . Baker E. N. H arding M . M . Hodgkin D. C. Rim m er R. & Sheet S. 1 9 6 9 Structure of rhom bohedral 2 zinc insulin crystals. N a t u r e L o n d . 224 491-496.

A dm iraal G. & Vos A. 1 9 8 3 S tructure of the tetrapeptide L-methionyl L-alpha-glutam yl L-histidyl lphenylalanine m onohydrate. A c t a c r y s t a l l o g r . C39 82-87.

Agarwal R. C. 1 9 7 8 New least squares refinem ent techniques based on fast Fourier transform algorithm . A c t a c r y s t a l l o g r . A34 791-809.

Artym iuk P .J . Blake C. C. F. G race D. E. P. O atley S .J . Phillips D. C. & Sternberg M .J . E. 1 9 7 9 Crystallographic studies of the dynam ic properties of Iysozyme. N a t u r e L o n d . 280 563-568.

Baker E. N. & H u b b ard R. E. 1 9 8 4 H -bonding in globular proteins. P r o g . B i o p h y s . m o l e c . B i o l . 44 97-179.

Bentley G. A. Dodson E. J . Dodson G. G. & Levitova A. 1 9 7 8 Zinc-free cubic pig insulin: crystallization and structure determ ination. J . m o l e c . B i o l . 125 387-396.

Bernstein F. C. Koetzle T . F. W illiams G. B. M eyer G. F. Price M . D. Rodgers J . R . K ennard O . Shim anouchi T. & Tasum i M . 1 9 7 7 T he Protein D ata Bank: a com puter-based archival file for m acrom olecular structures. J . m o l e c . B i o l . 122 535-542.

Bi R. C. D auter Z. Dodson E. J . Dodson G. G. G iordano F. & Reynolds C. D. 1 9 8 4 Insulin structure as a modified and m onom eric molecule. B i o p o l y m e r s 32 391-395.

Bi R. C. e t a l . 1 9 8 3 S tructural changes in the m onom eric despentapeptide (B30-B26) insulin crystal. P r o c . I n d i a n A c a d . S c i . { C h e m . S c i . ) 92 478-483.

Blundell T. L. & H um bel R. E. 1 9 8 0 H orm onal families - pancreatic hormones and homologous growth factors. N a t u r e L o n d . 287 781-784.

Blundell T . L. & Pearl L. 1 9 8 4 S tructural studies of the aspartic proteinases. F E B S L e t t . 174 96-100.

Blundell T. L. Dodson G. G. H odgkin D. C. & M ercola D. A. 1 9 7 2 Insulin: the structure in the crystal and its reflection in chem istry and biology. A d v . P r o t e i n C h e m . 26 279-402.

Bolin J . T . Film an D. J . M athew s D. A. H am lin R. C. & K rau t J . 1 9 8 2 Crystal structures of E . c o l i and L . c a s e i dihydrofolate reductase refined at 1.7 A resolution. J . b i o l . C h e m . 257 3650-3662.

B randenburg D. Saunders D. & Schuettler A. 1 9 8 3 Pancreatic hormones. In A m i n o a c i d s p e p t i d e s a n d p r o t e i n s s p e c i a l i s t r e p o r t s L o n d o n Vol. 14 pp. 461-476.

Brill A. S. & V enable J . H . 1 9 6 7 Effects of site sym m etry and sequential m etal binding upon protein titration (zinc insulin). J . A m . c h e m . S o c . 89 3622-3627.

Brill A. S. & Venable J . H. 1 9 6 8 T he binding of transition m etal ions in insulin crystals. J . m o l e c . B i o l . 36 343-353.

Broom head J . M . & Nichol A. D. I. 1 9 4 8 T he crystal structures of zinc and magnesium benzene sulphonates. A c t a c r y s t a l l o g r . 1 88-92.

Brown H . Sanger F. & K itai R . 1 9 5 5 T he structure of pig and sheep insulins. B i o c h e m . J . 60 556-565.

Candeloro S. de S. G rdenit D. T aylor N. & Hodgkin D. C. 1 9 7 3 T he structure of ferroverdin. II. R hom bohedral ferroverdin crystals. P r o c . R . S o c . L o n d . B 184 137-148.

C hothai C. & Ja n in J . 1 9 7 5 Principles of p ro te in : protein recognition. N a t u r e L o n d . 256 705-708.

C hothai C. Dodson G. G. Hodgkin D. C. & Lesk A. 1 9 8 3 Transmission of conform ational change in insulin. N a t u r e L o n d . 302 500-505.

C hothia C. Levitt M . & Richardson D. 1 9 7 7 Structure of proteins; packing of a-helices and P-pleated sheets. P r o c . n a t n . A c a d . S c i . U . S . A . 74 4130-4134.

C hothia C. Levitt M. & R ichardson D. 215-250. 1 9 8 1 Helix to helix packing in proteins. J . m o l e c . B i o l . 145

Crowfoot D. M. 1 9 3 5 X -ray single-crystal photography on insulin. N a t u r e L o n d . 135 591-592.

Crowfoot D. M. 1 9 3 7 Tw o crystalline modifications of insulin. N a t u r e L o n d . 140 149-150.

Crowfoot D. M. & Riley D. 1 9 3 9 X -ray measurements on wet insulin crystals. N a t u r e L o n d . 144 1011-1012.

Cutfield J . F. Cutfield S. M . Dodson E. J . Dodson G. G. Em din S. O. & Reynolds C. D. 1 9 7 9 Structure and biological activity of hagfish insulin. J . m o l e c . B i o l . 132 85-100.

Cutfield J . F. Cutfield S. M . Dodson E. J . Dodson G. G. Reynolds C. D. & Vallely D. 1 9 8 1 Similarities and differences in the crystal structures of insulin. In S t r u c t u r a l s t u d i e s o n m o l e c u l e s o f b i o l o g i c a l i n t e r e s t (ed. G. G. Dodson J . Glusker & D. Sayre) pp. 527-546. Oxford University Press.

Dodson E. J . 1 9 8 1 Block diagonal least squares refinement using fast Fourier techniques. In R e f i n e m e n t o f p r o t e i n s t r u c t u r e s P r o c e e d i n g s o f t h e D a r e s b u r y S t u d y W e e k e n d (ed. P. M achin I. Cam pbell & M. Elder) pp. 29-39. SER C Daresbury.

Dodson E. J . Dodson G. G. & Hodgkin D. C. 1 9 8 0 T he conformations observed in the N term inal A chain residues of insulin. In F r o n t i e r s o f b i o i n o r g a n i c c h e m i s t r y a n d m o l e c u l a r b i o l o g y (ed. S. N. Ananchenko) pp. 145-150. O xford: Pergam on Press.

Dodson E. J . Isaacs N. W. & R ollett J . S. 1 9 7 6 techniques. A c t a c r y s t a l l o g r . A32 311-320. Block diagonal least square refinement using fast Fourier

Dodson E. J . D odson G. G. H odgkin D. C. & Reynolds C. D. 1 9 7 9 S tructural relationships in the 2 Zn insulin hexam er. C a n . J . B i o c h e m . (Best M em orial Volum e) 57 469-479.

Dodson G. G . H u b b a rd R . E. & R eynolds C. D. activity. B i o p o l y m e r s 22 281-292. 1 9 8 3 Insulin's structural variations and their relation to

Dodson G. G. 1 9 8 1 Some refinem ent experiences w ith 2Zn insulin. In R e f i n e m e n t o f P r o t e i n S t r u c t u r e s P r o c e e d i n g s o f t h e D a r e s b u r y S t u d y W e e k e n d (ed. P. M achin J . C am pbell & M. E Ider) pp. 95-98. SE R C D aresbury.

E bina Y. L eland E. Ja rn a g in K . Eden M . Lanzlo G . Clauser E. O u J . H . M asiarz F. K an Y. N. Goldfine I. D . R o th R . A. & R u tte r W. J . 1 9 8 5 T h e h u m an insulin receptor cD N A ; the structural basis for horm one activated tran sm em b ran e signalling. C e l l 40 747-758.

E m din S. O . G am m eltoft S. & G liem ann J . 1 9 7 7 D egradation receptor binding affinity and potency in insulin from A tlantic hagfish. J . b i o l . C h e m . 252 602-608.

G am m eltoft S. 1 9 8 4 Insulin receptors binding kinetics and structure function relationship of insulin. P h y s i o l . R e v . 64 1321-1378.

G oldm an J . & C arp en ter F. 1 9 7 6 Zinc binding circular dichroism and equilibrium sedim entation studies on insulin (bovine) and several o f its derivatives. B i o c h e m i s t r y 13 4566-4574.

H arding M . M . & Cole S. J . 1 9 6 3 T h e crystal structure of di(histidino) zinc pentahydrate. A c t a c r y s t a l l o g r . 16 643-650.

H argreaves A. 1 9 5 7 C rystal structure of zinc /(-toluene sulphonate hexahydrate. A c t a c r y s t a l l o g r . 10 191-195.

H endrickson W . A. & T eeter M . M . 1 9 8 1 S tructure of the hydrophobic protein cram bin determ ined directly from the anom alous scattering of sulphur. N a t u r e L o n d . 290 107-113.

H erm ans J . 1 9 8 5 P otential functions for sim ulation of large molecules. In P r o c e e d i n g s o f a ; M o l e c u l a r D y n a m i c s a n d P r o t e i n S t r u c t u r e (ed. J . H erm ans) pp. 31-34. W estern Springs Illinois: Polycrystal Book Service.

H ohne E. & K retschner G. 1 9 8 2 New in terp retation of helical structures in polypeptides. S t u d i a B i o p h y s i c a 87 23-28.

H oi W . 1 9 7 8 T h e a helix dipole and the properties of proteins. N a t u r e L o n d . 2TS 443-446.

H udson P. H uley J . Jo h n M . Cronk M . Craw ford R . H aralam bidis J . T regear G. Shire J . & Niall H. 1 9 8 3 S tru ctu re of a genom ic clone encoding biologically active h u m an relaxin. N a t u r e L o n d . 301 628-630.

Jeffrey P. D. & Coates J . H . 1 9 6 6 An equilibrium ultracentrifuge study of the self-association of bovine insulin. B i o c h e m i s t r y 5 489-498.

K asuge M . Zick Y. Blith D. L. K arkson F. A. H arring H . U. & K ah n C. R. 1 9 8 2 Insulin stim ulation of phosphorylation of the (3 subunit of the insulin receptor: form ation of both phosphoserine and phosphotyrosine. J . b i o l . C h e m . 257 9891-9894.

K atsoyannis P. G. 1 9 7 9 New synthetic insulins. In T r e a t m e n t o f e a r l y d i a b e t e s (ed. R. A. Cam erini-D avalos & B. H ano v er) pp. 319-328. New Y ork: Plenum Publishing C orporation.

K ing G. L. & K ah n R . C. 1 9 8 1 N on parallel evolution of m etabolic and grow th prom oting functions. N a t u r e L o n d . 292 644-646.

K itagaw a K . O gaw a H . Burke G. T . Chanley J . D. & K atsoyannis P. G. 1 9 8 4 a Interaction between the A2 and A19 am ino acid residues is of critical im portance for high biological activity in insulin. B i o c h e m i s t r y 19 4444-4448.

K itagaw a K . O gaw a H . Burke G. T . Chanley J . D. & K atsoyannis P. G. 1 9 8 4 ^ T he critical role of the A am ino acid residue in the biological activity of insulin: [2 -glycine-A] insulin and [2 -alanine-A] insulin. B i o c h e m i s t r y 23 1405-1413.

K obayashi M . O hgaken S. Iw asaki M . M aegaw a H . Shigata Y. & Inouye K . 1 9 8 2 Supernorm al insulin (D-PHEB24) insulin w ith increased affinity for insulin receptors. B i o c h e m . b i o p h y s . R e s . C o m m u n . 107 329-336.

K onnert J . H. & H endrickson W . A . 1 9 8 0 A restrained param eter therm al factor refinem ent procedure. A c t a c r y s t a l l o g r . A 36 344r-3350.

Langs D. A. Sm ith D. G. Stezowski J . J . & Hughes R. E. 1 9 8 6 Structure of pressinoic acid: the cyclic moiety of vasopressin. S c i e n c e W a s h . 232 1240-1242.

M arki F. de G asparo M . Eisler K . R an k er B. Riniker B. R ottel W. & Siever P. 1 9 7 9 Synthesis and biological activity of 17 analogs of hu m an insulin. H o p p e - S e y l e r s Z. p h y s i o l . C h e m . 360 1619 1632.

M assague J . Pilch P. F. & Czech M . P. 1 9 8 1 A unique proteolytic cleavage site on the (5 subunit of the insulin receptor. J . b i o l . C h e m . 256 3182-3190. .

N akagaw a S. H. & T ager H. S. 1 9 8 8 Role of phenylalanine B25 side chain in directing insulin interaction with its receptor. J . biol. Chem. (In the press.)

N akagaw a S. H . Sheet M . J . & T ager H . S. 1 9 8 5 Insulin analogues bearing u n n atu ral arom atic am ino acid substitutions at B25. In P e p t i d e S t r u c t u r e a n d F u n c t i o n P r o c e e d i n g s o f t h e 9 t h A m e r i c a n P e p t i d e S y m p o s i u m (ed. C. M. Deber V. J . H ru b y & K. D. K opple) pp. 695-698.

N anjo K . Snake T . M iyano M . O kai K . Sowa R . K ondo M . N ishim ura S. Iua K . M iyuram a I. C. Given B. D. C han S .J . T ager H . Steiner D. & Rubinstein A. 1 9 8 6 Diabetes due to secretion of a structurally abnorm al insulin (insulin W akayam a). J . d i n . I n v e s t . 77 514-519.

N orth A. C. T . Phillips D. C. & M atthew s F. S. 1 9 6 8 A semi-empirical m ethod of absorption correction. A c t a c r y s t a l l o g r . A24 351-359.

van O bberghen E. Rossi B. Kowakski A. Euzzano H. & Ponzio G. 1 9 8 3 Receptor m ediated phosphorylation of the hepatic insulin receptor. Evidence that the M r 95 000 receptor subunit is its own kinase. P r o c . n a t n . A c a d . Sci. U.S.A.8 0 9 4 5 -9 4 9 .

Pauling L. Corey R. B. & Branson H. R. 1 9 5 1 Two hydrogen bonded helical configurations of the polypeptide chain. Proc. n a t n . A c a d . S c i . U . S . A . 37 205-211.

Pauling L. & Corey R. B. 1 9 5 1 Configuration of polypeptide chains with favoured orientations around single bonds: two new pleated sheets. P r o c . n a t n . A c a d . S c i . U . S . A . 37 729.o

Peking Insulin Structure G roup 1 9 7 1 Insulin's crystal structure at 2.5 A resolution. P e k i n g R e v . 40 11-16.

Peking Insulin Structure G roup 1 9 7 4 Studies on the mechanisms of insulin action. S c i . S i n . 17 752-778.

Sakabe N. Sakabe K. & Sasaki K. 1 9 8 5 X -ray studies of w ater structure on 2Zn insulin crystals. In P r o c . I n t .