Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ý nghĩa của kiểu hình đại thực bào trong ung thư và vật liệu sinh học
Tóm tắt
Đại thực bào từ lâu đã được biết đến với các kiểu hình không đồng nhất và khả năng biến đổi. Chúng thể hiện sự đa dạng chức năng với vai trò trong điều hòa sinh lý, sửa chữa mô, miễn dịch và bệnh tật. Có một phổ các kiểu hình đại thực bào với những chức năng hiệu ứng, các yếu tố phân tử, hồ sơ cytokine và chemokine, cũng như sự biểu hiện của thụ thể. Trong các môi trường vi mô khối u, nhóm đại thực bào được gọi là đại thực bào liên quan đến khối u tạo ra những sản phẩm phụ tăng cường sự phát triển và sự hình thành mạch máu của khối u, khiến chúng trở thành những mục tiêu hấp dẫn cho liệu pháp chống ung thư. Về mặt chữa lành vết thương và phản ứng với vật thể ngoại lai, cần phải có sự cân bằng giữa các đại thực bào pro-inflammatoty, chữa lành vết thương và điều tiết để đạt được sự cấy ghép thành công của một lớp nền cho kỹ thuật mô. Trong bài đánh giá này, chúng tôi thảo luận về nhiều cách mà đại thực bào được biết đến là quan trọng trong liệu pháp ung thư và vật liệu sinh học cấy ghép.
Từ khóa
#đại thực bào #kiểu hình đại thực bào #ung thư #vật liệu sinh học #liệu pháp ung thư #môi trường vi mô khối u #chữa lành vết thương #phản ứng với vật thể ngoại laiTài liệu tham khảo
Stout RD, Watkins SK, Suttles J: Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol 2009, 86: 1105–1109.
Gordon S, Taylor PR: Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005, 5: 953–964.
Stout RD, Suttles J: Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 2004, 76: 509–513.
Akilbekova D, Philiph R, Graham A, Bratlie KM: Macrophage reprogramming: influence of latex beads with various functional groups on macrophage phenotype and phagocytic uptake in vitro. J Biomed Mater Res Part A 2014,: doi: 10.1002/jbm.a.35169.
McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF: Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A 2013, 110: 17253–17258.
Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J: Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005, 175: 342–349.
Martinez FO, Gordon S: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014, 6: 1–13.
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege J-L, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014, 41: 14–20.
Mosser DM, Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008, 8: 958–969.
Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014, 40: 274–288.
Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity 2010, 32: 593–604.
Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003, 3: 23–35.
Lawrence T, Natoli G: Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011, 11: 750–761.
Taub DD, Cox GW: Murine Th1 and Th2 cell clones differentially regulate macrophage nitric oxide production. J Leukoc Biol 1995, 58: 80–89.
Wynn TA, Chawla A, Pollard JW: Macrophage biology in development, homeostasis and disease. Nature 2013, 496: 445–455.
Sica A, Mantovani A: Macrophage plasticity and polarization : in vivo veritas. J Clin Invest 2012, 122: 787–795.
Wolfs IMJ, Donners MMPC, de Winther MPJ: Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost 2011, 106: 763–771.
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25: 677–686.
Sica A, Schioppa T, Mantovani A, Allavena P: Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006, 42: 717–727.
Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008, 13: 453–461.
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23: 549–555.
Biswas SK, Chittezhath M, Shalova IN, Lim J-Y: Macrophage polarization and plasticity in health and disease. Immunol Res 2012, 53: 11–24.
Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, Daly KA, Reing JE, Badylak SF: Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 2012, 8: 978–987.
Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM: Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 2008, 14: 1835–1842.
Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M: Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 2013, 229: 176–185.
Mantovani A, Locati M: Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol 2013, 33: 1478–1483.
Kawamura K, Komohara Y, Takaishi K, Katabuchi H, Takeya M: Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol Int 2009, 59: 300–305.
Solinas G, Germano G, Mantovani A, Allavena P: Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009, 86: 1065–1073.
Allavena P, Sica A, Solinas G, Porta C, Mantovani A: The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 2008, 66: 1–9.
Qian B-Z, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141: 39–51.
Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW: A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 2009, 4: e6562.
Ruffell B, Affara NI, Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012, 33: 119–126.
De Palma M, Lewis CE: Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013, 23: 277–286.
Zhang W, Zhu X-D, Sun H-C, Xiong Y-Q, Zhuang P-Y, Xu H-X, Kong L-Q, Wang L, Wu W-Z, Tang Z-Y: Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 2010, 16: 3420–3430.
Squadrito ML, De Palma M: Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med 2011, 32: 123–145.
Bergers G, Hanahan D: Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008, 8: 592–603.
Jain RK: Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 2005, 19: 7–16.
Garber K: First results for agents targeting cancer-related inflammation. J Natl Cancer Inst 2009, 101: 1110–1112.
Mantovani A, Sica A: Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010, 22: 231–237.
Buhtoiarov IN, Lum HD, Berke G, Sondel PM, Rakhmilevich AL: Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. J Immunol 2005, 176: 309–318.
Guiducci C, Vicari AP, Sangaletti S, Trinchieri G: Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 2005, 65: 3437–3446.
Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AHM, Ballmer-Hofer K, Schwendener RA: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 2006, 95: 272–281.
Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008, 13: 206–220.
Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, Biswas SK, Murdoch C, Plate KH, Reiss Y, Lewis CE: Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res 2010, 70: 5270–5280.
Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, Politi LS, Gentner B, Brown JL, Naldini L, De Palma M: Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 2011, 19: 512–526.
Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ, Wang J: CXCL12 /CXCR4 /CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 2010, 29: 709–722.
Kim SY, Lee CH, Midura BV, Yeung C, Mendoza A, Hong SH, Ren L, Wong D, Korz W, Merzouk A, Salari H, Zhang H, Hwang ST, Khanna C, Helman LJ: Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 2008, 25: 201–211.
Richert MM, Vaidya KS, Mills CN, Wong D, Korz W, Hurst DR, Welch DR: Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol Rep 2009, 21: 761–767.
Porvasnik S, Sakamoto N, Kusmartsev S, Eruslanov E, Kim W-J, Cao W, Urbanek C, Wong D, Goodison S, Rosser CJ: Effects of CXCR4 antagonist CTCE-9908 on prostate tumor growth. Prostate 2009, 69: 1460–1469.
Ahn G-O, Tseng D, Liao C-H, Dorie MJ, Czechowicz A, Brown JM: Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A 2010, 107: 8363–8368.
Wong D, Korz W: Translating an antagonist of chemokine receptor CXCR4: from bench to bedside. Clin Cancer Res 2008, 14: 7975–7980.
Zhang J, Patel L, Pienta KJ: CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 2010, 21: 41–48.
Zhu X, Fujita M, Snyder LA, Okada H: Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J Neurooncology 2011, 104: 83–92.
Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, Wojno K, Snyder LA, Yan L, Pienta KJ: Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 2007, 67: 9417–9424.
Rozel S, Galbán CJ, Nicolay K, Lee KC, Sud S, Neeley C, Snyder LA, Chenevert TL, Rehemtulla A, Ross BD, Pienta KJ: Synergy between anti-CCL2 and docetaxel as determined by DW-MRI in a metastatic bone cancer model. J Cell Biochem 2009, 107: 58–64.
Kirk PS, Koreckij T, Nguyen HM, Brown LG, Snyder LA, Vessella RL, Corey E: Inhibition of CCL2 Signaling in Combination with Docetaxel Treatment Has Profound Inhibitory Effects on Prostate Cancer Growth in Bone. Int J Mol Sci 2013, 14: 10483–10496.
Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T, Standley DM, Nakanishi K, Nakai K, Akira S: The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 2010, 11: 936–944.
Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu Z-G: ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 2013, 23: 898–914.
Kuroda E, Ho V, Ruschmann J, Antignano F, Hamilton M, Rauh MJ, Antov A, Flavell RA, Sly LM, Krystal G: SHIP represses the generation of IL-3-induced M2 macrophages by inhibiting IL-4 production from basophils. J Immunol 2009, 183: 3652–3660.
Johnson EE, Buhtoiarov IN, Baldeshwiler MJ, Felder MA, Van Rooijen N, Sondel PM, Rakhmilevich AL: Enhanced T cell-independent antitumor effect of cyclophospamide combined with anti-CD40 mAb and CpG in mice. J Immunother 2011, 34: 76–84.
Arora M, Poe SL, Ray A, Ray P: LPS-induced CD11b + Gr1(int)F4/80+ regulatory myeloid cells suppress allergen-induced airway inflammation. Int Immunopharmacol 2011, 11: 827–832.
De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G, Mazzoleni S, Moi D, Venneri MA, Indraccolo S, Falini A, Guidotti LG, Galli R, Naldini L: Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 2008, 14: 299–311.
Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Åkerud P, De Mol M, Salomäki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P: HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011, 19: 31–44.
Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR: “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008, 205: 1261–1268.
Pollard JW: Trophic macrophages in development and disease. Nat Rev Immunol 2009, 9: 259–270.
Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A: HMGB1: endogenous danger signaling. Mol Med 2008, 14: 476–484.
Bianchi ME: DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007, 81: 1–5.
Osterloh A, Kalinke U, Weiss S, Fleischer B, Breloer M: Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide. J Biol Chem 2007, 282: 4669–4680.
Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M, Liao X, Billiar T, Xu J, Esmon CT, Tsung A: Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology 2011, 54: 999–1008.
Shi Y, Evans JE, Rock KL: Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003, 425: 516–521.
Sperling C, Fischer M, Maitz MF, Werner C: Blood coagulation on biomaterials requires the combination of distinct activation processes. Biomaterials 2009, 30: 4447–4456.
Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD: The role of complement in biomaterial-induced inflammation. Mol Immunol 2007, 44: 82–94.
Sarma JV, Ward PA: The complement system. Cell Tissue Res 2011, 343: 227–235.
Zdolsek J, Eaton JW, Tang L: Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans. J Transl Med 2007, 5: 31–36.
Abraham SN, St John AL: Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 2010, 10: 440–452.
Anderson JM: Biological responses to materials. Annu Rev Mater Res 2001, 31: 81–110.
Higgins DM, Basaraba RJ, Hohnbaum AC, Lee EJ, Grainger DW, Gonzalez-Juarrero M: Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol 2009, 175: 161–170.
McNally AK, Anderson JM: Complement C3 participation in monocyte adhesion to different surfaces. Proc Natl Acad Sci U S A 1994, 91: 10119–10123.
Yang D, Jones KS: Effect of alginate on innate immune activation of macrophages. J Biomed Mater Res A 2009, 90: 411–418.
Brodbeck WG, Colton E, Anderson JM: Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. J Mater Sci Mater Med 2003, 14: 671–675.
Love RJ, Jones KS: The recognition of biomaterials: pattern recognition of medical polymers and their adsorbed biomolecules. J Biomed Mater Res A 2013, 101: 2740–2752.
Hamad OA, Ekdahl KN, Nilsson B: Non-proteolytically activated C3 promotes binding of activated platelets and platelet-derived microparticles to leukocytes via CD11b/CD18. Immunology 2012, 217: 1191–1191.
Rodriguez A, Meyerson H, Anderson JM: Quantitative in vivo cytokine analysis at synthetic biomaterial implant sites. J Biomed Mater Res A 2009, 89: 152–159.
Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T, Anderson JM: Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. 2007, 83: 585–596.
Mesure L, De Visscher G, Vranken I, Lebacq A, Flameng W: Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts. PLoS One 2010, 5: e12949.
Xia Z, Triffitt JT: A review on macrophage responses to biomaterials. Biomed Mater 2006, 1: R1-R9.
Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, Weiss JM, Wlaschek M, Sunderkötter C, Scharffetter-Kochanek K: An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 2011, 121: 985–997.
MacLauchlan S, Skokos EA, Meznarich N, Zhu DH, Raoof S, Shipley JM, Senior RM, Bornstein P, Kyriakides TR: Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9. J Leukoc Biol 2009, 85: 617–626.
McNally AK, Anderson JM: Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am J Pathol 2002, 160: 621–630.
Helming L, Gordon S: Molecular mediators of macrophage fusion. Trends Cell Biol 2009, 19: 514–522.
Gretzer C, Emanuelsson L, Liljensten E, Thomsen P: The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. J Biomater Sci Polym Ed 2006, 17: 669–687.
Lynn AD, Kyriakides TR, Bryant SJ: Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A 2010, 93: 941–953.
Santerre JP, Woodhouse K, Laroche G, Labow RS: Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 2005, 26: 7457–7470.
Sorokin L: The impact of the extracellular matrix on inflammation. Nat Rev Immunol 2010, 10: 712–723.
Savill J, Gregory C, Haslett C: Eat Me or Die.. 2003, 302(November):1516–1517.
Lech M, Anders H-J: Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta 1832, 2013: 989–997.
Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, Thompson RW, Cheever AW, Murray PJ, Wynn TA: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog 2009, 5: e1000371.
Diegelmann RF, Evans MC: Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 2004, 9: 283–289.
Hamilton JA: Nondisposable materials, chronic inflammation, and adjuvant action. 2003, 73: 702–712.
Vidal B, Serrano AL, Tjwa M, Suelves M, Ardite E, De Mori R, Baeza-Raja B, Martínez de Lagrán M, Lafuste P, Ruiz-Bonilla V, Jardí M, Gherardi R, Christov C, Dierssen M, Carmeliet P, Degen JL, Dewerchin M, Muñoz-Cánoves P: Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway. Genes Dev 2008, 22: 1747–1752.
Wang Y, Wang YP, Zheng G, Lee VWS, Ouyang L, Chang DHH, Mahajan D, Coombs J, Wang YM, Alexander SI, Harris DCH: Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 2007, 72: 290–299.
Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ: Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 2002, 169: 2253–2263.
Saraiva M, O’Garra A: The regulation of IL-10 production by immune cells. Nat Rev Immunol 2010, 10: 170–181.
Murray PJ, Wynn TA: Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 2011, 89: 557–563.
Brys L, Beschin A, Raes G, Ghassabeh GH, Noel W, Brandt J, Brombacher F, Baetselier PD: Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol 2005, 174: 6095–6104.
Le SJ, Gongora M, Zhang B, Grimmond S, Campbell GR, Campbell JH, Rolfe BE: Gene expression profile of the fibrotic response in the peritoneal cavity. Differentiation 2010, 79: 232–243.
Gurtner GC, Werner S, Barrandon Y, Longaker MT: Wound repair and regeneration. Nature 2008, 453: 314–321.
Martin P, Leibovich SJ: Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 2005, 15: 599–607.
Eming SA, Krieg T, Davidson JM: Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007, 127: 514–525.
Sarrazy V, Billet F, Micallef L, Coulomb B, Desmoulière A: Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound repair Regen 2011, 19: S10-S155.
Hinz B: Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007, 127: 526–537.
Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol 2008, 214: 199–210.
Ninomiya K, Takahashi A, Fujioka Y, Ishikawa Y, Yokoyama M: Transforming growth factor-beta signaling enhances transdifferentiation of macrophages into smooth muscle-like cells. Hypertens Res 2006, 29: 269–276.
Jabs A, Moncada GA, Nichols CE, Waller EK, Wilcox JN: Peripheral blood mononuclear cells acquire myofibroblast characteristics in granulation tissue. J Vasc Res 2005, 42: 174–180.
Mooney JE, Rolfe BE, Osborne GW, Sester DP, van Rooijen N, Campbell GR, Hume DA, Campbell JH: Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. Am J Pathol 2010, 176: 369–380.
Hutchison N, Fligny C, Duffield JS: Resident mesenchymal cells and fibrosis. Biochim Biophys Acta 1832, 2013: 962–971.
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA: Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002, 3: 349–363.
Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C: Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 2001, 12: 2730–2741.
Kenneth Ward W: A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol 2008, 2: 768–777.
Sharkawy AA, Klitzman B, Truskey GA, Reichert WM: Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J Biomed Mater Res 1997, 37: 401–412.
Saino E, Focarete ML, Gualandi C, Emanuele E, Cornaglia AI, Imbriani M, Visai L: Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules 2011, 12: 1900–1911.
Vasconcelos DP, Fonseca AC, Costa M, Amaral IF, Barbosa MA, Aguas AP, Barbosa JN: Macrophage polarization following chitosan implantation. Biomaterials 2013, 34: 9952–9959.
Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL: Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 2013, 34: 4439–4451.
Bridges AW, Singh N, Burns KL, Babensee JE, Andrew Lyon L, García AJ: Reduced acute inflammatory responses to microgel conformal coatings. Biomaterials 2008, 29: 4605–4615.
Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C, Ratner BD, Jiang S: Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 2013, 31: 553–556.
Bryers JD, Giachelli CM, Ratner BD: Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol Bioeng 2012, 109: 1898–1911.
Beckstead BL, Tung JC, Liang KJ, Tavakkol Z, Usui ML, Olerud JE, Giachelli CM: Methods to promote Notch signaling at the biomaterial interface and evaluation in a rafted organ culture model. J Biomed Mater Res A 2009, 91: 436–446.
Linnes MP, Ratner BD, Giachelli CM: A fibrinogen-based precision microporous scaffold for tissue engineering. Biomaterials 2007, 28: 5298–5306.
Ratner BD: The biocompatibility manifesto: biocompatibility for the twenty-first century. J Cardiovasc Transl Res 2011, 4: 523–527.
Mantovani A: Macrophage diversity and polarization: in vivo veritas. Blood 2006, 108: 408–409.
Fukano Y, Usui ML, Underwood RA, Isenhath S, Marshall AJ, Hauch KD, Ratner BD, Olerud JE, Fleckman P: Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J Biomed Mater Res A 2010, 94: 1172–1186.
Bota PCS, Collie AMB, Puolakkainen P, Vernon RB, Sage EH, Ratner BD, Stayton PS: Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J Biomed Mater Res A 2010, 95: 649–657.
Bartneck M, Heffels K-H, Pan Y, Bovi M, Zwadlo-Klarwasser G, Groll J: Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres. Biomaterials 2012, 33: 4136–4146.
Bartneck M, Heffels K-H, Bovi M, Groll J, Zwadlo-Klarwasser G: The role of substrate morphology for the cytokine release profile of immature human primary macrophages. Mater Sci Eng C Mater Biol Appl 2013, 33: 5109–5114.
Bartneck M, Schulte VA, Paul NE, Diez M, Lensen MC, Zwadlo-Klarwasser G: Induction of specific macrophage subtypes by defined micro-patterned structures. Acta Biomater 2010, 6: 3864–3872.
Paul NE, Skazik C, Harwardt M, Bartneck M, Denecke B, Klee D, Salber J, Zwadlo-Klarwasser G: Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 2008, 29: 4056–4064.
Martínez E, Engel E, Planell JA, Samitier J: Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann Anat 2009, 191: 126–135.
Yim EKF, Leong KW: Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 2005, 1: 10–21.
Lord MS, Foss M, Besenbacher F: Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 2010, 5: 66–78.
Chen S, Jones JA, Xu Y, Low H-Y, Anderson JM, Leong KW: Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 2010, 31: 3479–3491.
Cao H, McHugh K, Chew SY, Anderson JM: The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res A 2010, 93: 1151–1159.
Barbosa JN, Amaral IF, Aguas AP, Barbosa MA: Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. J Biomed Mater Res A 2010, 93: 20–28.
Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G: The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 2014, 35: 4477–4488.