Helix điều phối: Một chủ đề chức năng phổ biến trong các protein tín hiệu đa dạng
Tóm tắt
Cơ chế truyền tín hiệu giữa miền thụ thể và miền hiệu ứng trong các protein tín hiệu đa miền chưa được hiểu rõ.
Sử dụng các phương pháp phân tích chuỗi nhạy cảm, chúng tôi đã xác định được một đoạn xoắn helix bảo tồn dài khoảng 40 amino acid trong nhiều loại protein tín hiệu, bao gồm nhiều kinase histidine cảm biến như Sln1p và cyclase guanylyl thụ thể như thụ thể peptid natriatri và thụ thể nitric oxide. Chúng tôi đặt tên cho đoạn xoắn này là helix tín hiệu (S)-helix và trình bày bằng chứng rằng nó hình thành một yếu tố cuộn xoắn song song mới, khác biệt với các đoạn xoắn helix đã biết trước đó trong các protein tín hiệu như mô-đun phosphotransfer Dimerization-Histidine của các kinase histidine, miền nội bào của các thụ thể hóa cảm ứng, các liên kết helical miền inter-GAF và mô-đun HAMP α-helix. Phân tích cấu trúc miền đã cho phép chúng tôi tái dựng đồ thị hàng xóm của miền cho S-helix, cho thấy rằng S-helix hầu như luôn xuất hiện giữa hai miền tín hiệu. Một số mẫu rõ ràng trong hàng xóm miền của S-helix cũng trở nên rõ ràng từ đồ thị. Nó thường tách rời các miền cảm biến đầu N đa dạng khỏi các miền tín hiệu xúc tác đầu C như kinase histidine, cyclase cNMP, phosphatase PP2C, ATPase AAA+ giống NtrC và cyclase diguanylate. Nó cũng có thể xảy ra giữa hai miền cảm biến như các miền PAS và đôi khi giữa miền liên kết DNA HTH và một miền cảm biến. Mẫu bảo tồn chuỗi của S-helix cho thấy sự hiện diện của một nhóm riêng biệt các amino acid phân cực trong các vị trí giao diện dimer bên trong bảy amino acid trung tâm của cuộn xoắn được hình thành bởi S-helix.
Kết hợp các quan sát này với các nghiên cứu đột biến đã được báo cáo trước đó về các protein chứa S-helix khác nhau, chúng tôi đề xuất rằng nó hoạt động như một công tắc ngăn chặn sự kích hoạt liên tục của các miền tín hiệu tiếp theo liên kết. Tuy nhiên, khi xảy ra các thay đổi cấu hình cụ thể do sự gắn kết của ligands hoặc các tín hiệu cảm biến khác ở miền phía trên liên kết, nó truyền đạt tín hiệu đến miền phía dưới. Do đó, S-helix đại diện cho một trong những chủ đề chức năng phổ biến nhất liên quan đến luồng tín hiệu giữa các mô-đun trong các protein tín hiệu đa miền thuộc loại prokaryote đa dạng.
Từ khóa
Tài liệu tham khảo
Ponting CP, Schultz J, Copley RR, Andrade MA, Bork P: Evolution of domain families. Adv Protein Chem 2000, 54: 185-244.
Aravind L, Anantharaman V, Iyer LM: Evolutionary connections between bacterial and eukaryotic signaling systems: a genomic perspective. Curr Opin Microbiol 2003,6(5):490-497. 10.1016/j.mib.2003.09.003
Stock AM, Robinson VL, Goudreau PN: Two-component signal transduction. Annu Rev Biochem 2000, 69: 183-215. 10.1146/annurev.biochem.69.1.183
McCue LA, McDonough KA, Lawrence CE: Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res 2000,10(2):204-219. 10.1101/gr.10.2.204
Linder JU, Schultz JE: The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal 2003,15(12):1081-1089. 10.1016/S0898-6568(03)00130-X
Galperin MY, Natale DA, Aravind L, Koonin EV: A specialized version of the HD hydrolase domain implicated in signal transduction. J Mol Microbiol Biotechnol 1999,1(2):303-305.
Anantharaman V, Aravind L: Cache - a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci 2000,25(11):535-537. 10.1016/S0968-0004(00)01672-8
Anantharaman V, Aravind L: The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends Biochem Sci 2001,26(10):579-582. 10.1016/S0968-0004(01)01968-5
Anantharaman V, Aravind L: Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria. BMC Genomics 2003,4(1):34. 10.1186/1471-2164-4-34
Mougel C, Zhulin IB: CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends Biochem Sci 2001,26(10):582-584. 10.1016/S0968-0004(01)01969-7
Zhulin IB, Nikolskaya AN, Galperin MY: Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J Bacteriol 2003,185(1):285-294. 10.1128/JB.185.1.285-294.2003
Tam R, Saier MHJ: Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 1993,57(2):320-346.
O'Hara PJ, Sheppard PO, Thogersen H, Venezia D, Haldeman BA, McGrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER: The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 1993,11(1):41-52. 10.1016/0896-6273(93)90269-W
Anantharaman V, Koonin EV, Aravind L: Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 2001,307(5):1271-1292. 10.1006/jmbi.2001.4508
Appleman JA, Chen LL, Stewart V: Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases. J Bacteriol 2003,185(16):4872-4882. 10.1128/JB.185.16.4872-4882.2003
Aravind L, Ponting CP: The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 1999,176(1):111-116. 10.1111/j.1574-6968.1999.tb13650.x
Williams SB, Stewart V: Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker region amphipathic helices in transmembrane signal transduction. Mol Microbiol 1999,33(6):1093-1102. 10.1046/j.1365-2958.1999.01562.x
Kim KK, Yokota H, Kim SH: Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 1999,400(6746):787-792. 10.1038/23512
Singh M, Berger B, Kim PS, Berger JM, Cochran AG: Computational learning reveals coiled coil-like motifs in histidine kinase linker domains. Proc Natl Acad Sci U S A 1998,95(6):2738-2743. 10.1073/pnas.95.6.2738
Lupas AN, Gruber M: The structure of alpha-helical coiled coils. Adv Protein Chem 2005, 70: 37-78. 10.1016/S0065-3233(05)70003-6
Fassler J, Landsman D, Acharya A, Moll JR, Bonovich M, Vinson C: B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners. Genome Res 2002,12(8):1190-1200. 10.1101/gr.67902
Weimbs T, Mostov K, Low SH, Hofmann K: A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol 1998,8(7):260-262. 10.1016/S0962-8924(98)01285-9
McLachlan AD, Stewart M: Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol 1975,98(2):293-304. 10.1016/S0022-2836(75)80119-7
Marina A, Waldburger CD, Hendrickson WA: Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. EMBO J 2005,24(24):4247-4259. 10.1038/sj.emboj.7600886
Tomomori C, Tanaka T, Dutta R, Park H, Saha SK, Zhu Y, Ishima R, Liu D, Tong KI, Kurokawa H, Qian H, Inouye M, Ikura M: Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Biol 1999,6(8):729-734. 10.1038/11495
Varughese KI, Madhusudan, Zhou XZ, Whiteley JM, Hoch JA: Formation of a novel four-helix bundle and molecular recognition sites by dimerization of a response regulator phosphotransferase. Mol Cell 1998,2(4):485-493. 10.1016/S1097-2765(00)80148-3
Fassler JS, Gray WM, Malone CL, Tao W, Lin H, Deschenes RJ: Activated alleles of yeast SLN1 increase Mcm1-dependent reporter gene expression and diminish signaling through the Hog1 osmosensing pathway. J Biol Chem 1997,272(20):13365-13371. 10.1074/jbc.272.20.13365
Potter LR: Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Front Biosci 2005, 10: 1205-1220.
Tao W, Malone CL, Ault AD, Deschenes RJ, Fassler JS: A cytoplasmic coiled-coil domain is required for histidine kinase activity of the yeast osmosensor, SLN1. Mol Microbiol 2002,43(2):459-473. 10.1046/j.1365-2958.2002.02757.x
Iyer LM, Anantharaman V, Aravind L: Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. BMC Genomics 2003,4(1):5-5. 10.1186/1471-2164-4-5
Sahu SN, Acharya S, Tuminaro H, Patel I, Dudley K, LeClerc JE, Cebula TA, Mukhopadhyay S: The bacterial adaptive response gene, barA, encodes a novel conserved histidine kinase regulatory switch for adaptation and modulation of metabolism in Escherichia coli. Mol Cell Biochem 2003,253(1-2):167-177. 10.1023/A:1026028930203
Gon S, Jourlin-Castelli C, Theraulaz L, Mejean V: An unsuspected autoregulatory pathway involving apocytochrome TorC and sensor TorS in Escherichia coli. Proc Natl Acad Sci U S A 2001,98(20):11615-11620. 10.1073/pnas.211330598
Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE: The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 1998,180(24):6635-6641.
Hammer BK, Tateda ES, Swanson MS: A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 2002,44(1):107-118. 10.1046/j.1365-2958.2002.02884.x
Stewart V: Biochemical Society Special Lecture. Nitrate- and nitrite-responsive sensors NarX and NarQ of proteobacteria. Biochem Soc Trans 2003,31(Pt 1):1-10.
Cuff JA, Barton GJ: Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000,40(3):502-511. 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q
Lupas A, Van Dyke M, Stock J: Predicting coiled coils from protein sequences. Science 1991,252(5010):1162-1164.
Eddy SR: Profile hidden Markov models. Bioinformatics 1998,14(9):755-763. 10.1093/bioinformatics/14.9.755
Schneider TD: Consensus sequence Zen. Appl Bioinformatics 2002,1(3):111-119.
Martinez SE, Bruder S, Schultz A, Zheng N, Schultz JE, Beavo JA, Linder JU: Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization. Proc Natl Acad Sci U S A 2005,102(8):3082-3087. 10.1073/pnas.0409913102
Shu CJ, Ulrich LE, Zhulin IB: The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors. Trends Biochem Sci 2003,28(3):121-124. 10.1016/S0968-0004(03)00032-X
Methe B, Fraser CM: Roll with the flow: microbial masters of redox chemistry. Trends Microbiol 2004,12(10):439-441. 10.1016/j.tim.2004.08.004
Wilson EM, Chinkers M: Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 1995,34(14):4696-4701. 10.1021/bi00014a025
Kelsell RE, Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang RB, Garbers DL, Bird AC, Moore AT, Hunt DM: Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 1998,7(7):1179-1184. 10.1093/hmg/7.7.1179
Ellenberger TE, Brandl CJ, Struhl K, Harrison SC: The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 1992,71(7):1223-1237. 10.1016/S0092-8674(05)80070-4
Martinez SE, Wu AY, Glavas NA, Tang XB, Turley S, Hol WG, Beavo JA: The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci U S A 2002,99(20):13260-13265. 10.1073/pnas.192374899
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997,25(17):3389-3402. 10.1093/nar/25.17.3389
Aravind L, Koonin EV: Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol 1999,287(5):1023-1040. 10.1006/jmbi.1999.2653
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004,32(5):1792-1797. 10.1093/nar/gkh340
Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004,14(6):1188-1190. 10.1101/gr.849004
Nielsen H, Engelbrecht J, Brunak S, von Heijne G: A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 1997,8(5-6):581-599. 10.1142/S0129065797000537
Nielsen H, Engelbrecht J, Brunak S, von Heijne G: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 1997,10(1):1-6. 10.1093/protein/10.1.1
Claros MG, von Heijne G: TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 1994,10(6):685-686.
Hofmann K, Stoffel W: TMbase - A database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 1993, 374: 166.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001,305(3):567-580. 10.1006/jmbi.2000.4315
Aravind L, Ponting CP: The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 1997,22(12):458-459. 10.1016/S0968-0004(97)01148-1
Anantharaman V, Aravind L: MEDS and PocR are novel domains with a predicted role in sensing simple hydrocarbon derivatives in prokaryotic signal transduction systems. Bioinformatics 2005,21(12):2805-2811. 10.1093/bioinformatics/bti418
Ponting CP, Aravind L: PAS: a multifunctional domain family comes to light. Curr Biol 1997,7(11):674-677. 10.1016/S0960-9822(06)00352-6
Taylor BL, Zhulin IB: PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 1999,63(2):479-506.
Tyrrell R, Verschueren KH, Dodson EJ, Murshudov GN, Addy C, Wilkinson AJ: The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Structure 1997,5(8):1017-1032. 10.1016/S0969-2126(97)00254-2
Iyer LM, Leipe DD, Koonin EV, Aravind L: Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 2004,146(1-2):11-31. 10.1016/j.jsb.2003.10.010
Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL: The Pfam protein families database. Nucleic Acids Res 2002,30(1):276-280. 10.1093/nar/30.1.276
Bateman A: The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 1997,22(1):12-13. 10.1016/S0968-0004(96)30046-7
Ponting CP: CBS domains in CIC chloride channels implicated in myotonia and nephrolithiasis (kidney stones). J Mol Med 1997,75(3):160-163.
Das AK, Helps NR, Cohen PT, Barford D: Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. Embo J 1996,15(24):6798-6809.
Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM: The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 2005,29(2):231-262. 10.1016/j.femsre.2004.12.008
Farmer CS, Kurtz DMJ, Liu ZJ, Wang BC, Rose J, Ai J, Sanders-Loehr J: The crystal structures of Phascolopsis gouldii wild type and L98Y methemerythrins: structural and functional alterations of the O2 binding pocket. J Biol Inorg Chem 2001,6(4):418-429. 10.1007/s007750100218
Pesce A, Couture M, Dewilde S, Guertin M, Yamauchi K, Ascenzi P, Moens L, Bolognesi M: A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family. Embo J 2000,19(11):2424-2434. 10.1093/emboj/19.11.2424
Staub E, Fiziev P, Rosenthal A, Hinzmann B: Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire. Bioessays 2004,26(5):567-581. 10.1002/bies.20032
Leipe DD, Koonin EV, Aravind L: STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 2004,343(1):1-28. 10.1016/j.jmb.2004.08.023
Batagelj V, Mrvar A: Pajek - Analysis and Visualization of Large Networks. In Graph Drawing Software. Edited by: Jünger M, Mutzel P. Berlin , Springer; 2003:77-103.
Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler GH, Mazumder R, Nikolskaya AN, Panchenko AR, Rao BS, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH: CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 2003,31(1):383-387. 10.1093/nar/gkg087
Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997,18(15):2714-2723. 10.1002/elps.1150181505
DeLano WL: The PyMOL Molecular Graphics System. San Carlos, CA, USA , DeLano Scientific; 2002.