The shade‐avoidance syndrome: multiple signals and ecological consequences

Plant, Cell and Environment - Tập 40 Số 11 - Trang 2530-2543 - 2017
Carlos L. Ballaré1,2, Ronald Pierik3
1IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas Universidad de Buenos Aires Ave. San Martín 4453 C1417DSE Buenos Aires Argentina
2IIB‐INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de San Martín B1650HMP Buenos Aires Argentina
3Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Tóm tắt

AbstractPlants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far‐red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth‐related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.

Từ khóa


Tài liệu tham khảo

10.1007/s10886-012-0145-3

10.1086/497442

10.1016/S1360-1385(99)01383-7

10.1146/annurev-arplant-050213-040145

10.1111/j.1399-3054.1995.tb05105.x

10.1104/pp.112.200733

Ballaré C.L., 1987, Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight, Plant, Cell and Environment, 10, 551, 10.1111/1365-3040.ep11604091

10.1104/pp.100.1.170

10.2307/2389983

10.1111/j.1365-3040.1991.tb01371.x

10.1104/pp.89.4.1324

10.1126/science.247.4940.329

10.1007/s00442-016-3558-9

10.1034/j.1399-3054.2000.100308.x

10.1111/pce.12609

10.1007/978-3-642-68090-8_4

10.1104/pp.107.106468

10.1104/pp.111.187237

10.1104/pp.109.135509

10.1111/nph.13041

10.1104/pp.106.094631

10.1016/S1360-1385(02)02245-8

10.1104/pp.107.108456

10.1111/tpj.13316

10.1101/031088

10.11038/ncomms12570

10.1111/nph.13032

10.1016/j.pbi.2016.03.005

10.1146/annurev-arplant-050312-120221

10.1006/anbo.1994.1071

10.1016/j.cub.2008.12.046

10.1111/pce.12877

10.1104/pp.112.193359

10.1111/tpj.12264

10.1104/pp.113.221549

10.1111/nph.14210

10.1038/ncomms7202

10.1016/j.cub.2012.02.061

10.1093/jxb/ern315

10.1105/tpc.112.104869

10.1016/j.cub.2015.12.066

10.1105/tpc.114.125047

10.1007/BF00394591

10.1016/j.devcel.2010.07.011

Das D., 2016, Ethylene‐ and shade‐induced hypocotyl elongation share transcriptome patterns and functional regulators, Plant Physiology, 172, 718

10.1023/A:1004383526878

10.1038/nature06520

Wit M., 2016, Light‐mediated hormonal regulation of plant growth and development, Annual Review of Plant Biology, 67, 613

10.1073/pnas.1205437109

10.1016/j.cub.2016.10.031

10.1111/tpj.12203

10.1016/j.envexpbot.2015.05.010

10.2307/2403337

10.1007/s00344-009-9135-2

10.1104/pp.103.034397

10.1111/j.1365-313X.2007.03122.x

10.1016/j.pbi.2015.08.009

10.1021/jf051857o

10.1111/j.1469-8137.2007.02168.x

10.1038/emboj.2009.4

10.1038/nature06448

10.1046/j.1365-2486.1998.00191.x

10.1093/jxb/erp304

10.1016/j.pbi.2016.03.008

10.1111/j.1469-8137.2006.01893.x

10.1111/j.1365-313X.2011.04485.x

10.1111/j.1365-3040.2012.02529.x

10.1016/j.cub.2016.10.001

10.1126/science.175.4023.776

10.1104/pp.108.119503

10.1007/s00442-014-2983-x

10.1105/tpc.109.066969

10.3390/plants5010007

10.1073/pnas.1403052111

10.1104/pp.73.2.434

10.1105/tpc.111.089813

10.1073/pnas.45.3.344

10.1073/pnas.1320355111

10.1104/pp.104.059055

10.1111/j.1365-313X.2012.05033.x

10.1038/emboj.2009.306

10.1111/nph.13351

10.1016/j.devcel.2010.10.024

10.1016/j.envexpbot.2015.06.009

10.1007/s00442-013-2721-9

10.1073/pnas.0509805103

10.1146/annurev.arplant.59.032607.092953

10.1105/tpc.109.069765

10.1104/pp.47.6.775

10.1007/BF02183089

10.1111/j.1399-3054.1984.tb05168.x

10.1093/jxb/erm205

10.1093/aob/mcv036

10.1016/j.tplants.2009.11.007

10.1111/nph.12407

10.1111/j.1365-313X.2011.04598.x

10.1073/pnas.1013457108

10.1111/j.1365-313X.2011.04597.x

10.1007/s00344-014-9454-9

10.1073/pnas.1203746109

10.1016/j.pmpp.2016.02.004

10.1105/tpc.1116.00463

10.1104/pp.110.156802

10.1093/pcp/pcr076

10.1126/scisignal.aaf6530

10.1105/tpc.113.120857

10.1016/j.tplants.2010.08.003

10.1105/tpc.112.095711

10.1111/nph.12971

Li J., 2011, Phytochrome signaling mechanisms, The Arabidopsis Book / American Society of Plant Biologists, 9

10.1101/gad.187849.112

LindblomK.L.(2015)Isolation of phytochrome National Historic Chemical Landmarks program pp.http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/isolation‐of‐phytochrome.html. American Chemical Society.

10.1007/s10526-014-9602-y

10.1111/j.1365-313X.2007.03341.x

10.1111/nph.13332

10.1104/pp.122.1.117

10.1111/j.1469-8137.2009.02921.x

10.1007/978-3-642-65418-3

10.1104/pp.112.211375

10.1073/pnas.0900701106

10.1007/BF00388211

10.1111/j.1365-3040.2005.01484.x

Nagata M., 2015, Red/far red light controls arbuscular mycorrhizal colonization via jasmonic acid and strigolactone signaling, Plant and Cell Physiology, 56, 2100

10.1023/A:1009800517530

10.1016/j.cell.2015.12.018

10.1104/pp.104.045120

10.1093/jxb/ert389

10.1104/pp.108.133496

10.1104/pp.114.239160

10.1111/j.1365-313X.2004.02044.x

10.1111/j.1469-8137.2011.03952.x

10.1101/gad.283234.116

10.1104/pp.114.241844

10.1038/sj.emboj.7601890

10.1093/pcp/pcf171

10.1016/0042-6822(61)90319-1

10.1046/j.1365-3040.1997.d01-51.x

10.1111/j.1399-3054.1996.tb00205.x

10.1016/B978-0-12-614445-1.50030-5

10.1111/j.1365-313X.2007.03059.x

10.1038/nature02174

10.1371/journal.pone.0090587

10.1080/07352689.2011.615706

10.1086/303282

10.1086/285832

10.1104/pp.110.160820

10.1101/gad.364005

10.1093/jxb/erv011

10.1007/BF02913343

10.1016/j.pbi.2015.12.005

10.1146/annurev.pp.33.060182.002405

10.1146/annurev.pp.46.060195.001445

10.1046/j.1365-3040.1997.d01-104.x

10.1111/j.1365-313X.2009.03866.x

10.1242/dev.126.19.4235

10.1073/pnas.1105892108

10.1016/j.cell.2008.01.049

10.1111/j.1365-3040.1987.tb01607.x

10.1371/journal.pgen.1004416

10.1073/pnas.0809942106

10.1104/pp.114.242438

10.1186/s12915-015-0156-y

10.1242/dev.079111

10.1111/pce.12880

Wang H., 2016, Regulatory modules controlling early shade avoidance response in maize seedlings, BMC Genomics, 17, 1

10.1111/j.1469-8137.1980.tb00761.x

10.1073/pnas.1201616109

10.1111/jipb.12363