The second variational formula for Willmore submanifolds in Sn
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chen, B.Y.: Some conformai invariants of submanifolds and their applications. Bol. Un. Math. Ital. (4)10 (1974), 380–385.
Cheng, S.Y. and Yau, S.-T.: Eypersurfaces with constant scalar curvature, Math. Ann. 225(1977), 195–204.
Kobayashi, O.: A Willmore type problem for S2 × S2, Differential geometry and differential equations (Shanghai, 1985), 67–72, Lecture Notes in Math., 1255, Springer, Berlin, 1987.
Li, H., Wang, C. and Wu, F., A Moebius characterization of Veronese surfaces in Sn, Math. Ann. 319(2001), 707–714.
Li, P. and Yau, S.-T.: A new conformai invariant and its application to Willmore conjecture and the first eigenvalue of compact surface, Invent. Math. 69(1982), 269–291.
Palmer, B.: The conformai Gauss map and the stability of Willmore surfaces, Ann. Global Anal. Geom. Vol. 9, No. 3 (1991), 305–317.
Palmer, B.: Second variational formulas for Willmore surfaces, The problem of Plateau, 221–228, World Sci. Publishing, River Edge, NJ, 1992.
Peterson, M.A.: Geometrical methods for the elasticity theory of membranes, J. Math. Physics, 26(4), 1985, 711–717.
Simon, L: Existence of surfaces minimizing the Willmore energy, Comm. Analysis Geometry, vol. 1, n.2 (1993), 281–326.
Wallach, N.R.: Minimal immersions of symmetric spaces into spheres, “Symmetric Space”, Ed. Boothby and Weiss, Dekker, New York, 1972, 1-40.
Willmore, T.J.: Total curvature in Riemannian geometry. Ellis Horwood Limitd, 1982.
Willmore, T.J.: Note on embedded surfaces, An. Sti. Univ. “Al. I. Cuza” Iasi Sect. I a Mat., 11(1965), 493–496.