The second variational formula for Willmore submanifolds in Sn

Results in Mathematics - Tập 40 Số 1-4 - Trang 205-225 - 2001
Zhaoli Guo1, Changping Wang2, Haizhong Li3
1Department of Mathematics, Yunnan Normal University, Kunming, P. R. of China
2Department of Mathematics, Peking University, Beijing, P. R.of China
3Department of Mathematical Sciences, Tsinghua University, Beijing, P. R. of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blaschke, W.:Vorlesungen uber Differentialgeometrie. Vol.3, Springer, Berlin, 1929.

Bryant, R.: A duality theorem for Willmore surfaces, J. Differential Geom. 20(1984), 23–53.

Chen, B.Y.: Some conformai invariants of submanifolds and their applications. Bol. Un. Math. Ital. (4)10 (1974), 380–385.

Cheng, S.Y. and Yau, S.-T.: Eypersurfaces with constant scalar curvature, Math. Ann. 225(1977), 195–204.

Kobayashi, O.: A Willmore type problem for S2 × S2, Differential geometry and differential equations (Shanghai, 1985), 67–72, Lecture Notes in Math., 1255, Springer, Berlin, 1987.

Li, H., Willmore hypersurfaces in a sphere, To appear in Asian J. of Math., 5(2001).

Li, H., Global rigidity theorems of hypersurfaces, Ark. Mat. 35(1997), 327–351.

Li, H., Wang, C. and Wu, F., A Moebius characterization of Veronese surfaces in Sn, Math. Ann. 319(2001), 707–714.

Li, P. and Yau, S.-T.: A new conformai invariant and its application to Willmore conjecture and the first eigenvalue of compact surface, Invent. Math. 69(1982), 269–291.

Palmer, B.: The conformai Gauss map and the stability of Willmore surfaces, Ann. Global Anal. Geom. Vol. 9, No. 3 (1991), 305–317.

Palmer, B.: Second variational formulas for Willmore surfaces, The problem of Plateau, 221–228, World Sci. Publishing, River Edge, NJ, 1992.

Peterson, M.A.: Geometrical methods for the elasticity theory of membranes, J. Math. Physics, 26(4), 1985, 711–717.

Pinkall, U.: Hopf tori in S3, Invent. Math. 81(1985), 379–386.

Pinkall, U.: Inequalities of Willmore type for submanifolds, Math. Z. 193 (1986), 241–246.

Simon, L: Existence of surfaces minimizing the Willmore energy, Comm. Analysis Geometry, vol. 1, n.2 (1993), 281–326.

Wallach, N.R.: Minimal immersions of symmetric spaces into spheres, “Symmetric Space”, Ed. Boothby and Weiss, Dekker, New York, 1972, 1-40.

Wang, C.P.: Moebius geometry of submanifolds in Sn, Manuscripta Math. 96(1998), 517–534.

Weiner, J.L.: On a problem of Chen, Willmore, et al, Indiana University Journal, 27(1978), 19–35.

Willmore, T.J.: Total curvature in Riemannian geometry. Ellis Horwood Limitd, 1982.

Willmore, T.J.: Note on embedded surfaces, An. Sti. Univ. “Al. I. Cuza” Iasi Sect. I a Mat., 11(1965), 493–496.

Willmore, T.J.: Mean curvature of Riemannian immersions, J. London Math. Soc, 3(1971), 307–310.