The salivary glands of the vector mosquito, Aedes aegypti, express a novel member of the amylase gene family

Insect Molecular Biology - Tập 1 Số 4 - Trang 223-232 - 1993
Genelle L. Grossman1, Anthony A. James2
1Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts
2Department of Molecular Biology and Biochemistry, University of California, Irvine, California

Tóm tắt

AbstractSeveral cDNA clones with similarity to α‐amylases have been characterized from a library made from adult female salivary gland RNA isolated from the vector mosquito, Aedes aegypti. The corresponding gene, designated Amylase I (Amy I), is expressed specifically in the proximal‐lateral lobes of the adult female salivary gland, a pattern overlapping that of another gene, Mal I, involved in carbohydrate metabolism. The deduced amino acid sequence of Amy I indicates that this gene encodes a protein, approximate Mr= 81,500, that appears to be a novel member of the amylase gene family. The mosquito protein contains a putative signal peptide for secretion and several consensus sites for asparagine‐linked glycosylation. The Amy I protein shows significant similarity to invertebrate and vertebrate amylases including the conservation of four reactive and substrate binding sites. However, the amino‐terminal region of the Amy‐I protein is unique to the mosquito. Similarity with the Drosophila melanogaster protein is evident only after the first 260 amino acids in the mosquito sequence. The identification of this gene and its expression pattern adds to the observed relationship between spatial‐specific gene expression in the female salivary glands and the specific feeding mode of the adult mosquito.

Từ khóa


Tài liệu tham khảo

Altshcul S. R., 1990, Basic local alignment search tool, J Mol Biol, 215, 403, 10.1016/S0022-2836(05)80360-2

10.1093/genetics/114.1.137

10.1093/nar/16.5.1861

10.1083/jcb.67.3.835

10.1093/nar/14.21.8399

10.1093/genetics/126.1.131

10.1021/bi00591a005

Christophers S. R., 1960, Aedes aegypti, the Yellow Fever Mosquito

10.1017/S0016672300030299

Doane W. W. Thompson D. B. Norman R. A.andHawley S. A.(1990)Molecular genetics of a three‐gene cluster in theAmyregion ofDrosophila. Isozymes: Structure Function and Use in Biology and Medicine pp.19–48.

10.1007/BF02603120

10.1002/jcp.1030500102

Gemmill R. M., 1985, Molecular cloning of alpha‐amylase genes from Drosophila melanogaster. I. Clone isolation by use of a mouse probe, Genetics, 110, 299, 10.1093/genetics/110.2.299

10.1093/nar/14.13.5337

10.1016/0092-8674(80)90125-7

10.1007/BF02396216

10.1139/g90-074

10.1073/pnas.88.5.1611

10.1007/BF00498936

10.1139/g89-045

10.1016/0378-1119(89)90384-3

10.1016/0169-4758(91)90092-3

10.1016/0012-1606(86)90018-7

10.1111/j.1365-2915.1992.tb00587.x

10.1038/287117a0

10.1111/j.1475-4754.1982.tb01001.x

10.1016/0020-1790(90)90074-5

10.1016/0022-1910(90)90021-7

10.1093/oxfordjournals.jbchem.a134659

McGeachin R. L., 1967, Variations in amylase content during the life span of the mosquito, Fedn Proc Fedn Am Socs Exp Biol, 26, 839

McGeachin R. L., 1972, Variations in alpha‐amylase during the life span of the mosquito, Comp Biochem Physiol, 43, 185

10.1016/0003-2697(84)90808-X

Metcalf R. L., 1945, The physiology of the salivary glands of Anopheles quadrimaculatus, J Natn Malar Soc, 4, 271

10.1016/0378-1119(86)90110-1

10.1016/0167-4838(86)90289-X

Payant V., 1988, Evolutionary conservation of the chromosomal configuration and regulation of amylase genes among eight species of the Drosophila melanogaster species subgroup, Mol Biol Evol, 5, 560

10.1073/pnas.85.8.2444

10.4269/ajtmh.1984.33.17

10.1139/g76-003

10.1073/pnas.74.12.5463

Skeiky Y. A. W., 1987, Transcriptional behavior of silkmoth chorion genes in vivo and in injected Xenopus laevis oocytes, J Biol Chem, 262, 6628, 10.1016/S0021-9258(18)48288-9

10.1016/0014-5793(88)80644-6

10.1016/0022-2836(86)90308-6

10.1002/j.1460-2075.1984.tb02213.x

10.2307/2441487

10.1016/0092-8674(87)90224-8

10.1016/0092-8674(81)90140-9