The role of weakly imposed Dirichlet boundary conditions for numerically stable computations of swelling phenomena

Computational Mechanics - Tập 43 - Trang 545-557 - 2008
W. Ehlers1, A. Acartürk1
1Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany

Tóm tắt

It is still a challenge to model swelling phenomena occurring in charged hydrated porous media. This is not only due to the overall complexity of the model but also to the fact that boundary conditions occur, which depend on internal variables. In the present contribution, a multi-component model based on the Theory of Porous Media (TPM) is presented. The advantage of this model is that it is thermodynamically consistent and it consists of only three primary variables. As a result of the boundary conditions depending on internal variables, the numerical treatment within the finite element method (FEM) by use of the mixed finite element scheme reveals artificial oscillations in the numerical results. To overcome these oscillations, we propose to fulfil boundary conditions weakly.

Tài liệu tham khảo

Acartürk A, Ehlers W, Abbas I (2004) Modelling of swelling phenomena in charged hydrated porous media. PAMM 4: 296–297 Bathe K-J (1996) Finite element procedures, 2nd edn. Prentice-Hall, Englewood Cliffs Boer R (2000) Theory of porous media. Springer, Berlin de Boer R, Ehlers W (1986) Theorie der Mehrkomponentenkontinua mit Anwendungen auf bodenmechanische Probleme. Forschungsberichte aus dem Fachbereich Bauwesen Heft 40, Universität-GH-Essen Bowen RM (1976) Theory of mixtures. In: Eringen AC(eds) Continuum physics, vol III, mixtures and EM field theories. Academic Press, London, pp 1–127 Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18: 1129–1148 Chapelle D, Bathe KJ (1993) The inf-sup test. Comput Struct 47: 537–545 Donnan FG (1911) Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie 17: 572–581 Dowell EH, Hall KC (2001) Modeling of fluid–structure interaction. Ann Rev Fluid Mech 33: 445–490 Ehlers W (1989) Poröse Medien—ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 47, Universität-GH-Essen Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J(eds) Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 3–86 Ehlers W, Eipper G (1999) Finite elastic deformations in liquid-saturated and empty porous solids. Transp Porous Media 34: 179–191 Ehlers W, Ellsiepen P (2001) Theoretical and numerical methods in environmental continuum mechanics based on the Theory of Porous Media. In: Schrefler BA (ed) Environmental geomechanics. Springer, Wien, CISM Courses and Lectures No. 417, pp 1–81 Ehlers W, Karajan N, Markert B (2006) A porous media model describing the inhomogeneous behaviour of the human intervertebral disc. Materialwissenschaften und Wekstofftechnik 37: 546–551 Ehlers W, Karajan N, Markert B (2008) An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech Model Mechanobiol. doi:10.1007/s10237-008-0129-y Ehlers W, Markert B, Acartürk A (2005a) Swelling phenomena of hydrated porous materials. In: Abousleiman YN, Cheng AH-D, Ulm FJ(eds) Poromechanics III, Proceedings of the 3rd Biot Conference on Poromechanics. Balkema, Leiden, pp 781–786 Ehlers W, Markert B, Karajan N, Acartürk A (2005b) A coupled FE analysis of the intervertebral disc based on a multiphasic TPM formulation. In: Holzapfel GA, Ogden RW(eds) IUTAM symposium on mechanics of biological tissue. Springer, Wien, pp 373–386 Felippa CA, Park KC (1980) Staggered transient analysis procedures for coupled mechanical systems: formulation. Comput Methods Appl Mech Eng 24: 61–111 Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190: 3247–3270 Frijns AJH, Huyghe JM, Janssen JD (1997) A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int J Eng Sci 35: 1419–1429 Frijns AJH, Huyghe JM, Kaasschieter EF, Wijlaars MW (2003) Numerical simulation of deformations and electrical potentials in a cartilage substitute. Biorheology 40: 123–131 Gu WY, Lai WM, Mow VC (1997) A triphasic analysis of negative osmotic flows through charged hydrated soft tissues. J Biomech 30: 71–78 Hansbo P (1995) Lagrangian incompressible flow computations in three dimensions by use of space-time finite elements. Int J Numer Methods Fluids 20: 989–1001 Hansbo P, Hermansson J (2003) Nitsche’s method for coupling non-matching meshes in fluid-structure vibration problems. Comput Mech 32: 134–139 Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14: 227–253 Hirt CW, Cook JL, Butler TD (1970) A Lagrangian method for calculating the dynamics of an incompressible fluid with free surface. J Comput Phys 5: 103–124 Huyghe JM, Janssen JD (1997) Quadriphasic mechanics of swelling incompressible porous media. Int J Eng Sci 35: 793–802 Kaasschieter EF, Frijns AJH, Huyghe JMRJ (2003) Mixed finite element modelling of cartilaginous tissues. Math Comput Simul 61: 549–560 Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviours of articular cartilage. ASME J Biomech Eng 113: 245–258 Lai WM, Mow VC, Sun DD, Ateshian GA (2000) On the electric potentials inside a charged soft hydrated biological tissue: Streaming potential vs. diffusion potential. ASME J Biomech Eng 122: 336–346 Lanir Y (1987) Biorheology and fluidflux in swelling tissues. I. Bicomponent theory for small deformations, including concentration effects. Biorheology 24: 173–187 van Loon R, Huyghe JM, Wijlaars MW, Baaijens FPT (2003) 3D FE implementation of an incompressible quariphasic mixture model. Int J Numer Methods Eng 57: 1243–1258 Mow VC, Ateshian GA, Lai WM, Gu WY (1998) Effects of fixed charges on the stress-relaxation behavior of hydrated soft tissues in a confined compression problem. Int J Solids Struct 35: 4945–4962 Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and relaxation of articular cartilage in compression: theory and experiments. ASME J Biomech Eng 102: 73–84 Mow VC, Ratcliffe A (1997) Structure and function of articular cartilage and meniscus. In: Mow VC, Hayes WC(eds) Basic orthopaedic biomechanics, 2nd edn.. Lippincott-Raven, Philadelphia, pp 113–176 Radovitzky R, Ortiz M (1998) Lagrangian finite element analysis of newtonian fluid flows. Int J Numer Methods Eng 43: 607–619 Ramaswamy B, Kawahara M (1987) Lagrangian finite element analysis applied to viscous free surface fluid flow. Int J Numer Methods Fluids 7: 953–984 Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Ann Rev Fluid Mech 31: 567–603 Snijders H, Huyghe JM, Janssen JD (1995) Triphasic finite element model for swelling porous media. Int J Numer Methods Fluids 20: 1039–1046 Sun DN, Gu WY, Guo XE, Mow WMLVC (1999) A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int J Numer Methods Eng 45: 1375–1402 Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130 Wall WA (1999) Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. Dissertation, Institut für Baustatik, Universität Stuttgart Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput Fluids 36: 169–183 Wilson W, van Donkelaar CC, Huyghe JM (2005) A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissue. ASME J Biomech Eng 127: 158–165 Zienkiewicz OC, Qu S, Taylor RL, Nakazawa S (1986) The patch test for mixed formulations. Int J Numer Methods Eng 23: 1873–1883 Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1, 5th edn. Butterworth-Heinemann, Oxford Zienkiewicz OC, Taylor RL, Sherwin SJ, Peiró J (2003) On discontinuous galerkin methods. Int J Numer Methods Eng 58: 1119–1148