The role of vibration and pass number on microstructure and mechanical properties of AZ91/SiC composite layer during friction stir processing

Behrouz Bagheri1, Amin Abdollahzadeh2, Farzaneh Sharifi3, Mahmoud Abbasi4
1Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran
2Department of Materials Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
4Faculty of Engineering, University of Kashan, Kashan, Iran

Tóm tắt

In this study, nano-sized SiC particles are added to AZ91 magnesium alloy using friction stir processing (FSP) and friction stir vibration processing (FSVP) to produce surface nano-composite layers. FSVP is a modified method of FSP in which the specimen is vibrated during FSP. The influence of FSP and FSVP pass numbers on mechanical and microstructural behaviors of the developed surfaces is investigated. It is indicated that nano-composite layers produced by FSVP have finer microstructures compared to those produced by FSP, and nano-sized particles are distributed more homogeneously. Furthermore, mechanical properties including hardness, scratch resistance, ductility, and strength of FSV processed specimens, were higher than those related to FS processed specimens. The results show a decline in the porosity content as the FSP passes are increased. Also, the compressive strength of the FSVP-ed composites is higher than those for the FSP-ed samples. It is also noticed that an increase in the vibration frequency during the FSVP process causes a more uniform dispersion of composite particles and thus, decreases particle clustering.

Từ khóa


Tài liệu tham khảo

10.1007/s11665-016-2291-1

10.1080/10408436.2017.1358146

10.1007/s11665-015-1786-5

10.1080/10426914.2017.1303162

10.1007/s12666-017-1060-7

10.1080/10426911003636936

10.1016/j.matchar.2006.04.025

10.5604/18972764.1225604

10.1007/s00170-014-6577-x

10.1016/j.msea.2012.08.084

10.1016/j.scriptamat.2005.11.056

10.1080/10426914.2017.1303147

10.1007/s12613-017-1408-3

10.1007/s13369-018-3312-1

10.3139/146.111025

10.1016/j.surfcoat.2020.125488

10.1007/s11665-021-05467-z

10.1007/s00170-014-5806-7

10.1016/j.acme.2016.03.002

10.1002/maco.201911084

10.1007/s00170-016-9383-9

10.1007/s00170-014-6205-9

ASTM-E112–13, 2011, Standard test methods for determining average grain size

ASTM-E8, 2011, Standard test methods of tension testing of metallic materials

10.1134/S1029959920010038

10.1016/j.matdes.2017.05.013

10.1016/j.jmapro.2018.05.029

10.1007/s12541-019-00134-9

10.1007/s12613-020-1993-4

10.1177/0954406219900194

10.1016/j.matchemphys.2020.123066

Raeissi M, 2019, Mater Res Exp, 6

Hertzberg RW. Deformation and fracture mechanics of engineering materials. 4th ed. Hoboken, NJ: John Wiley & Sons, Inc. 1996, pp.135–139.

10.3139/146.111369

10.1016/j.msea.2008.09.064

10.1007/s11665-020-04639-7

10.1016/j.msea.2003.10.374

Babu NK, 2016, Mater Sci Eng A, 77, 258

10.1088/2053-1591/aac705

Porter DA, Easterling KE, Sherif M. Phase transformation in metals and alloys. 3rd ed. New York, NY: CRC Press, 2009, pp.156–165.

10.1007/s00170-017-0810-3

10.1016/S1003-6326(19)65046-6

10.1016/j.msea.2011.10.043

10.1007/s00170-020-05839-0

10.1007/s00170-018-2521-9

10.1016/j.jmatprotec.2004.07.149

10.1007/s12633-018-0037-4

10.1016/j.matchemphys.2019.121954

10.1016/S1875-5372(14)60036-9

Dieter GE, Bacon D. Mechanical and metallurgy. London, UK: McGraw-Hill, 1988, pp.184–193.

10.1177/0021998320925528

10.1016/j.compositesa.2011.06.010

10.1016/j.msea.2016.12.080

10.1007/s11661-005-0252-7

10.1007/s12613-020-2085-1

10.1046/j.1365-2818.2001.00772.x

10.1016/S1003-6326(20)65264-5

10.1007/s12206-016-1217-z