Vai trò của phân phosphatase tyrosine protein nội mạch trong chức năng tổng hợp nitric oxide ở bệnh tiểu đường: từ sinh học phân tử đến lâm sàng

Journal of Cell Communication and Signaling - Tập 15 - Trang 467-471 - 2021
Alberto Fernando Oliveira Justo1, Pedro Paulo Luciano Afonso2
1Department of Medicine, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
2Hospital Municipal do Campo Limpo, São Paulo, Brazil

Tóm tắt

Synthase nitric oxide nội mạch (eNOS) và phosphatase protein tyrosine kiểu thụ thể nội mạch (VE-PTP) là một trong những con đường tín hiệu chính liên quan đến sức khỏe nội mạch trong bệnh tiểu đường. Nhiều báo cáo đã chỉ ra rằng việc ức chế VE-PTP có thể dẫn đến sự sản xuất nitric oxide, mặc dù các nghiên cứu lặp lại đã cho thấy VE-PTP điều chỉnh eNOS một cách gián tiếp tại Ser1177. Một bài báo gần đây, thú vị (Siragusa et al. trong Tạp chí Nghiên cứu Tim mạch, 2020. https://doi.org/10.1093/cvr/cvaa213), cho thấy rằng VE-PTP điều chỉnh eNOS một cách trực tiếp, khử phosphoryl hóa eNOS tại Tyr81 và gián tiếp tại Ser1177 và ảnh hưởng của một chất ức chế VE-PTP, AKB-9778, đối với huyết áp ở bệnh nhân tiểu đường.

Từ khóa

#eNOS #VE-PTP #nitric oxide #bệnh tiểu đường #sinh học phân tử #lâm sàng

Tài liệu tham khảo

Albarrán-Juárez J, Iring A, Wang S, Joseph S, Grimm M, Strilic B, Wettschureck N, Althoff TF, Offermanns S (2018) Piezo1 and G q/G 11 promote endothelial inflammation depending on flow pattern and integrin activation. J Exp Med 215:2655–2672. https://doi.org/10.1084/jem.20180483 Brandes RP, Fleming I, Busse R (2005) Endothelial aging. Cardiovasc Res 66:286–294. https://doi.org/10.1016/j.cardiores.2004.12.027 Campochiaro PA, Peters KG (2016) Targeting Tie2 for treatment of diabetic retinopathy and diabetic macular edema. Curr Diab Rep. https://doi.org/10.1007/s11892-016-0816-5 Campochiaro PA, Sophie R, Tolentino M, Miller DM, Browning D, Boyer DS, Heier JS, Gambino L, Withers B, Brigell M, Peters K (2015) Treatment of diabetic macular edema with an inhibitor of vascular endothelial-protein tyrosine phosphatase that activates Tie2. Ophthalmology 122:545–554. https://doi.org/10.1016/j.ophtha.2014.09.023 Carota IA, Kenig-Kozlovsky Y, Onay T, Scott R, Thomson BR, Souma T, Bartlett CS, Li Y, Procissi D, Ramirez V, Yamaguchi S, Tarjus A, Tanna CE, Li C, Eremina V, Vestweber D, Oladipupo SS, Breyer MD, Quaggin SE (2019) Targeting VE-PTP phosphatase protects the kidney from diabetic injury. J Exp Med 216:936–949. https://doi.org/10.1084/jem.20180009 Chattopadhyay R, Dyukova E, Singh NK, Ohba M, Mobley JA, Rao GN (2014) Vascular endothelial tight junctions and barrier function are disrupted by 15(S)-hydroxyeicosatetraenoic acid partly via protein kinase C e-mediated zona occludens-1 phosphorylation at threonine 770/772. J Biol Chem 289:3148–3163. https://doi.org/10.1074/jbc.M113.528190 Di Lorenzo A, Lin MI, Murata T, Landskroner-Eiger S, Schleicher M, Kothiya M, Iwakiri Y, Yu J, Huang PL, Sessa WC (2013) eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J Cell Sci 126:5541–5552. https://doi.org/10.1242/jcs.153601 Dominguez MG, Hughes VC, Pan L, Simmons M, Daly C, Anderson K, Noguera-Troise I, Murphy AJ, Valenzuela DM, Davis S, Thurston G, Yancopoulos GD, Gale NW (2007) Vascular endothelial tyrosine phosphatase (VE-PTP)-null mice undergo vasculogenesis but die embyronically because of defects in angiogenesis. Proc Natl Acad Sci U S A 104:3243–3248. https://doi.org/10.1073/pnas.0611510104 Du Z, Lovly CM (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17:1–13. https://doi.org/10.1186/s12943-018-0782-4 Fisslthaler B, Loot AE, Mohamed A, Busse R, Fleming I (2008) Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin. Circ Res 102:1520–1528. https://doi.org/10.1161/CIRCRESAHA.108.172072 Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837. https://doi.org/10.1093/eurheartj/ehr304 Fulton D, Church JE, Ruan L, Li C, Sood SG, Kemp BE, Jennings IG, Venema RC (2005) Src kinase activates endothelial nitric-oxide synthase by phosphorylating Tyr-83. J Biol Chem 280:35943–35952. https://doi.org/10.1074/jbc.M504606200 Fulton D, Ruan L, Sood SG, Li C, Zhang Q, Venema RC (2008) Agonist-stimulated endothelial nitric oxid synthase activation and vascular relaxation role of eNOS phosphorylation at Tyr83. Circ Res 102:497–504. https://doi.org/10.1161/CIRCRESAHA.107.162933 Ghosh CC, David S, Zhang R, Berghelli A, Milam K, Higgins SJ, Hunter J, Mukherjee A, Wei Y, Tran M, Suber F, Kobzik L, Kain KC, Lu S, Santel A, Yano K, Guha P, Dumont DJ, Christiani DC, Parikh SM (2016) Gene control of tyrosine kinase Tie2 and vascular manifestations of infections. Proc Natl Acad Sci U S A 113:2472–2477. https://doi.org/10.1073/pnas.1519467113 Goel S, Gupta N, Walcott BP, Snuderl M, Kesler CT, Kirkpatrick ND, Heishi T, Huang Y, Martin JD, Ager E, Samuel R, Wang S, Yazbek J, Vakoc BJ, Peterson RT, Padera TP, Duda DG, Fukumura D, Jain RK (2013) Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djt164 Hussain RM, Neiweem AE, Kansara V, Harris A, Ciulla TA (2019) Tie-2/angiopoietin pathway modulation as a therapeutic strategy for retinal disease. Expert Opin Investig Drugs 28:861–869. https://doi.org/10.1080/13543784.2019.1667333 Iring A, Weinstein LS, Offermanns S (2019) Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest 129:2775–2791. https://doi.org/10.1172/JCI123825 Juettner VV, Kruse K, Dan A, Vu VH, Khan Y, Le J, Leckband D, Komarova Y, Malik AB (2019) VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism. J Cell Biol 218:1725–1742. https://doi.org/10.1083/jcb.201807210 Miller K, Fortun JA (2018) Diabetic macular edema: current understanding, pharmacologic treatment options, and developing therapies. Asia Pac J Ophthalmol 7:28–35. https://doi.org/10.22608/APO.2017529 Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ (2006) Nitric oxide and atherosclerosis: an update. Nitric Oxide 15:265–279. https://doi.org/10.1016/j.niox.2006.03.011 Navia-Pelaez JM, Campos GP, Araujo-Souza JC, Stergiopulos N, Capettini LSA (2018) Modulation of nNOSser852 phosphorylation and translocation by PKA/PP1 pathway in endothelial cells. Nitric Oxide 72:52–58. https://doi.org/10.1016/j.niox.2017.11.007 Parreira LB, de Oliveira Vitorino PV, Jardim PCBV, Sousa ALL, Jardim TV, de Moura SW, Justo AFO, Barroso WKS (2018) Comparison between supervised and partly supervised cardiac rehabilitation protocols in hypertensive patients: a randomized controlled trial. Curr Hypertens Rev 14:161–169. https://doi.org/10.2174/1573402114666180413121016 Ruviaro AR, de Barbosa P, PM, Alexandre EC, Justo AF, Antunes E, Macedo GM, (2020) Aglycone-rich extracts from citrus by-products induced endothelium-independent relaxation in isolated arteries. Biocatal Agric Biotechnol 23:101481. https://doi.org/10.1016/j.bcab.2019.101481 Siragusa M, Fleming I (2016) The eNOS signalosome and its link to endothelial dysfunction. Pflugers Arch Eur J Physiol 468:1125–1137. https://doi.org/10.1007/s00424-016-1839-0 Siragusa M, Justo AFO, Malacarne PF, Strano A, Buch A, Withers B, Peters KG, Fleming I (2020) VE-PTP inhibition elicits eNOS phosphorylation to blunt endothelial dysfunction and hypertension in diabetes. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa213 Souma T, Thomson BR, Heinen S, Carota IA, Yamaguchi S, Onay T, Liu P, Ghosh AK, Li C, Eremina V, Hong YK, Economides AN, Vestweber D, Peters KG, Jin J, Quaggin SE (2018) Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A 115:1298–1303. https://doi.org/10.1073/pnas.1714446115 Wang Y, Nagase S, Koyama A (2004) Stimulatory effect of IGF-I and VEGF on eNOS message, protein expression, eNOS phosphorylation and nitric oxide production in rat glomeruli, and the involvement of PI3-K signaling pathway. Nitric Oxide 10:25–35. https://doi.org/10.1016/j.niox.2004.02.001