The role of serotonin and diet in the prevalence of irritable bowel syndrome: a systematic review

Khushi Bruta1, . Vanshika1, Kishnoor Bhasin1, Bhawana1
1Department of Biochemistry, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Vasundhara Enclave, New Delhi, 110096, India

Tóm tắt

AbstractSerotonin or 5-hydroxytryptamine (5-HT)- a neurotransmitter of both the Enteric Nervous System and the Central Nervous System is synthesized by the hydroxylation of L- tryptophan to 5-hydroxytryptophan.Serotonin has been associated with gut functions like assimilation and absorption, alongside the regulation of particle transport and fluid discharge in the gastrointestinal tract and its deficiency is found to be a prominent factor in the prevalence of gut disorders like Irritable Bowel Syndrome.For this review, we assessed the conventional treatment methods of common drugs, with the recently accredited treatment options like dietary regulation, exercise, meditation, and acupuncture. Having found that the most commonly used drugs exhibited various side effects like nausea, fatigue, rash, and dizziness, an in-depth evaluation of different Indian dietary patterns and their respective effects on tryptophan levels has been highlighted to formulate an ideal diet for patients with Irritable Bowel Syndrome (IBS). This review seeks to explore the numerous studies conducted to link IBS with the lack of serotonin production in the body, alongside exploring the evidence associating certain foods with raised tryptophan levels to hypothesize a suitable Indian diet.This review, in its essence, stresses the crucial need for further research on the dietary implications of common Indian foods and their FODMAP (Fermented Oligosaccharides, Disaccharides, Monosaccharides, And Polyols) contents, while underscoring the benefits of using unconventional and natural methods for the treatment of tryptophan-related gut disorders.

Từ khóa


Tài liệu tham khảo

Kendig DM, Grider JR. Serotonin and colonic motility. Neurogastroenterol Motil. 2015;27(7):899–905.

Kadowaki M, Wang XO, Shimatani H, Yoneda S, Takaki M. 5-HT4 receptor enhances the propulsive power of the peristaltic reflex in the rat distal colon. Auton Neurosci. 2002;99(1):62–5.

Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, et al. The diverse metabolic roles of peripheral serotonin. Endocrinology. 2017;158(5):1049–63.

Budhoo MR, Harris RP, Kellum JM. 5-Hydroxytryptamine-induced cl− transport is mediated by 5-HT3 and 5-HT4 receptors in the rat distal colon. Eur J Pharmacol. 1996;298(2):137–44.

Burleigh DE, Borman RA. Short-circuit current responses to 5-hydroxytryptamine in human ileal mucosa are mediated by a 5-HT4 receptor. Eur J Pharmacol. 1993;241(1):125–8.

Siriwardena A, Kellum JM Jr. A 5-HT2 receptor mediates serotonin-induced electrolyte transport in rat left colon. J Surg Res. 1993;55(3):323–9.

Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharmacol Ther. 2008;31(3):187–99.

Imada-Shirakata Y, Kotera T, Ueda S, Okuma M. Serotonin activates electrolyte transport via 5-HT2AReceptor in rat colonic crypt cells. Biochem Biophys Res Commun. 1997;230(2):437–41.

Tuo BG, Isenberg JI. Effect of 5-hydroxytryptamine on duodenal mucosal bicarbonate secretion in mice. Gastroenterology. 2003;125(3):805–14.

Tuo BG, Sellers Z, Paulus P, Barrett KE, Isenberg JI. 5-HT induces duodenal mucosal bicarbonate secretion via cAMP-and Ca2+−dependent signaling pathways and 5-HT4 receptors in mice. Am J Physiol-Gastrointest Liver Physiol. 2004;286(3):G444–51.

Cho HJ, Callaghan B, Bron R, Bravo DM, Furness JB. Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine. Cell Tissue Res. 2014;356(1):77–82.

Watanabe H, Akasaka D, Ogasawara H, Sato K, Miyake M, Saito K, et al. Peripheral serotonin enhances lipid metabolism by accelerating bile acid turnover. Endocrinology. 2010;151(10):4776–86.

Raybould HE, Glatzle J, Robin C, Meyer JH, Phan T, Wong H, et al. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. Am J Physiol-Gastrointest Liver Physiol. 2003;284(3):G367–72.

LePard KJ, Stephens RL. Serotonin inhibits gastric acid secretion through a 5-hydroxytryptamine1-like receptor in the rat. J Pharmacol Exp Ther. 1994;270(3):1139–44.

Wøjdemann M, Wettergren A, Hartmann B, Holst JJ. Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand J Gastroenterol. 1998;33(8):828–32.

Wøjdemann M, Wettergren A, Hartmann B, Hilsted L, Holst JJ. Inhibition of sham feeding-stimulated human gastric acid secretion by glucagon-like peptide-2. J Clin Endocrinol Metabol. 1999;84(7):2513–7.

Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8(1):56.

Margolis KG, Stevanovic K, Li Z, Yang QM, Oravecz T, Zambrowicz B, et al. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut. 2014;63(6):928–37.

Zelkas L, Raghupathi R, Lumsden AL, Martin AM, Sun E, Spencer NJ, et al. Serotonin-secreting enteroendocrine cells respond via diverse mechanisms to acute and chronic changes in glucose availability. Nutr Metab. 2015;12(1):1–9.

Manocha M, Khan WI. Serotonin and GI disorders: an update on clinical and experimental studies. Clin Transl Gastroenterol. 2012;3(4):e13.

Fitzgerald P, Cassidy Eugene M, Clarke G, Scully P, Barry S, Quigley Eamonn MM, et al. Tryptophan catabolism in females with irritable bowel syndrome: relationship to interferon-gamma, severity of symptoms and psychiatric co-morbidity. Neurogastroenterol Motil. 2008;20(12):1291–7.

Clarke G, Fitzgerald P, Cryan JF, Cassidy EM, Quigley EM, Dinan TG. Tryptophan degradation in irritable bowel syndrome: evidence of indoleamine 2, 3-dioxygenase activation in a male cohort. BMC Gastroenterol. 2009;9(1):1–7.

Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H, et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology. 2004;126(7):1657–64.

Tack J, Broekaert D, Corsetti M, Fischler B, Janssens J. Influence of acute serotonin reuptake inhibition on colonic sensorimotor function in man. Aliment Pharmacol Ther. 2006;23(2):265–74.

Coates MD, Johnson AC, Greenwood-van Meerveld B, Mawe GM. Effects of serotonin transporter inhibition on gastrointestinal motility and colonic sensitivity in the mouse. Neurogastroenterol Motil. 2006;18(6):464–71.

Sikander A, Rana SV, Sinha SK, Prasad KK, Arora SK, Sharma SK, et al. Serotonin transporter promoter variant: analysis in Indian IBS patients and control population. J Clin Gastroenterol. 2009;43(10):957–61.

Houghton LA, Atkinson W, Whitaker RP, Whorwell PJ, Rimmer MJ. Increased platelet depleted plasma 5-hydroxytryptamine concentration following meal ingestion in symptomatic female subjects with diarrhoea predominant irritable bowel syndrome. Gut. 2003;52(5):663–70.

Atkinson W, Lockhart S, Whorwell PJ, Keevil B, Houghton LA. Altered 5-hydroxytryptamine signaling in patients with constipation-and diarrhea-predominant irritable bowel syndrome. Gastroenterology. 2006;130(1):34–43.

Dunlop SP, Coleman NS, Blackshaw E, Perkins AC, Singh G, Marsden CA, et al. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin Gastroenterol Hepatol. 2005;3(4):349–57.

David DA. Irritable bowel syndrome: psychological comorbidities and cognitive behavioural therapy. A review of the literature. Gastrointest Nurs. 2012;10(10):44–50.

Mousavi T, Nikfar S, Abdollahi M. An update on efficacy and safety considerations for the latest drugs used to treat irritable bowel syndrome. Expert Opin Drug Metab Toxicol. 2020;16(7):583–604.

Young SN. How to increase serotonin in the human brain without drugs. J Psych Neurosci. 2007;32(6):394.

Maleki BH, Tartibian B, Mooren FC, FitzGerald LZ, Krüger K, Chehrazi M, et al. Low-to-moderate intensity aerobic exercise training modulates irritable bowel syndrome through antioxidative and inflammatory mechanisms in women: results of a randomized controlled trial. Cytokine. 2018;102:18–25.

Fadda F. Tryptophan-free diets: a physiological tool to study brain serotonin function. Physiology. 2000;15(5):260–4.

Chang FY, Lu CL. Treatment of irritable bowel syndrome using complementary and alternative medicine. J Chin Med Assoc. 2009;72(6):294–300.

Heijnen S, Hommel B, Kibele A, Colzato LS. Neuromodulation of aerobic exercise—a review. Front Psychol. 2016;6:1890.

Thompson WG. Irritable bowel syndrome: a management strategy. Best Pract Res Clin Gastroenterol. 1999;13(3):453–60.

Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM. L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int J Tryptophan Res. 2009;2:IJTR-S2129.

Biggio G, Fadda F, Fanni P, Tagliamonte A, Gessa GL. Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci. 1974;14(7):1321–9.

Fernstrom JD, Wurtman RJ. Brain serotonin content: increase following ingestion of carbohydrate diet. Science. 1971;174(4013):1023–5.

Koopman KE, Booij J, Fliers E, Serlie MJ, La Fleur SE. Diet-induced changes in the lean brain: hypercaloric high-fat-high-sugar snacking decreases serotonin transporters in the human hypothalamic region. Mol Metab. 2013;2(4):417–22.

Fernstrom JD. Modification of brain serotonin by the diet. Annu Rev Med. 1974;25(1):1–8.

El-Salhy M, Ystad SO, Mazzawi T, Gundersen D. Dietary fiber in irritable bowel syndrome. Int J Mol Med. 2017;40(3):607–13.

Mullie P, Godderis L, Clarys P. Determinants and nutritional implications associated with low-fat food consumption. Appetite. 2012;58(1):34–8.

Longvah T, Anantan I, Bhaskarachary K, Venkaiah K, Longvah T. Indian food composition tables. Hyderabad: National Institute of Nutrition, Indian Council of Medical Research; 2017.

Dhingra D, Michael M, Rajput H, Patil RT. Dietary fibre in foods: a review. J Food Sci Technol. 2012;49(3):255–66.

Devinder Dhingra, Mona Michael, Hradesh Rajput, R. T. Patil Dietary fibre in foods: a review. J Food Sci Tech. 2012;(3):255–66.