Vai trò của các biến đổi protein trong quá trình lão hóa của Acetobacter senegalensis phơi khô trong quá trình bảo quản

Microbial Cell Factories - Tập 13 - Trang 1-16 - 2014
Rasoul Shafiei1,2, Raziyeh Zarmehrkhorshid1, Azeddine Bentaib3, Manoochehr Babanezhad4, Pierre Leprince3, Frank Delvigne5, Philippe Thonart1,5
1Walloon Center of Industrial Biology, University of Liège, Liège, Belgium
2Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
3GIGA–Neuroscience, University of Liège, Liège, Belgium
4Department of Statistics, Faculty of Sciences, Golestan University, Iran
5Bio-industry Unit, Gembloux Agro-Bio Tech, Gembloux, University of Liège, Liège, Belgium

Tóm tắt

Mất khả năng sống sót là một trong những vấn đề quan trọng nhất trong quá trình sản xuất văn hóa khởi đầu. Nghiên cứu trước đây chủ yếu tập trung vào quy trình sản xuất các khởi đầu vi khuẩn, nhưng có rất ít nghiên cứu về sự suy giảm protein tế bào gây ra sự khiếm khuyết của tế bào trong quá trình bảo quản. Trong nghiên cứu này, chúng tôi đã điều tra ảnh hưởng của nhiệt độ bảo quản (−21, 4, 35°C) đến sự thay đổi protein tế bào có thể góp phần vào sự lão hóa của Acetobacter senegalensis phơi khô. Các quần thể không đồng nhất bao gồm các tế bào có thể nuôi cấy, tế bào sống nhưng không thể nuôi cấy (VBNC) và tế bào chết đã được tạo ra khi các tế bào phơi khô được bảo quản ở −21 và 4°C trong 12 tháng, trong khi nhiệt độ bảo quản cao hơn (35°C) chủ yếu gây ra cái chết của các tế bào. Phân tích proteome của tế bào bảo quản bằng 2D-DiGE cho thấy một mẫu biến đổi của hồ sơ protein đối với các tế bào được bảo quản ở 4 và 35°C do sự hình thành của các dãy điểm protein và sự thay đổi của điểm isoelectric (pI). Định lượng protein carbonyl hóa bằng ELISA cho thấy các tế bào được bảo quản ở 4 và 35°C có hàm lượng protein carbonyl hóa cao hơn so với các tế bào tươi. 2D-DiGE tiếp theo là Western blotting cũng xác nhận sự carbonyl hóa của các protein tế bào liên quan đến quá trình dịch mã và tạo năng lượng. Đặc tính phát quang tự động của các tế bào được bảo quản ở 35°C tăng đáng kể, điều này có thể là dấu hiệu của sự glycation protein trong quá trình bảo quản. Thêm vào đó, tỷ lệ axit béo không bão hòa trong tế bào và độ hòa tan của các protein tế bào giảm khi bảo quản tế bào ở nhiệt độ cao hơn, điều này gợi ý rằng quá trình peroxidation của axit béo và có thể là lipid hóa protein và oxy hóa đã xảy ra. Nhiệt độ bảo quản cao gây ra một số phản ứng suy thoái như oxy hóa protein, lipid hóa và glycation có thể dẫn đến các thay đổi protein tiếp theo như sự thay đổi pI và không hòa tan protein. Các biến đổi này có thể phần nào giải thích cho những thay đổi trong khả năng sống của tế bào. Cũng có thể suy luận rằng ngay cả sự carbonyl hóa vừa phải của một số protein tế bào quan trọng (như protein ribosome) có thể dẫn đến sự hình thành VBNC hoặc cái chết của vi khuẩn phơi khô. Hơn nữa, có vẻ như các cơ chế khác của sự suy thoái biomolecule trước sự carbonyl hóa protein dẫn đến sự hình thành VBNC dưới nhiệt độ bảo quản rất thấp.

Từ khóa

#Acetobacter senegalensis #lão hóa #protein biến đổi #carbonyl hóa #VBNC

Tài liệu tham khảo

Holzapfel WH: Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol. 2002, 75: 197-212. 10.1016/S0168-1605(01)00707-3. Sokollek SJ, Hammes WP: Description of a starter culture preparation for vinegar fermentation. Syst Appl Microbiol. 1997, 20: 481-491. 10.1016/S0723-2020(97)80017-3. Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M: Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res. 2009, 37: 5768-5783. 10.1093/nar/gkp612. Shafiei R, Delvigne F, Thonart P: Flow-cytometric assessment of damages to Acetobacter senegalensis during freeze-drying process and storage. Acetic Acid Bacteria. 2013, 2 (s1): e10- Shafiei R, Delvigne F, Babanezhad M, Thonart P: Evaluation of viability and growth of Acetobacter senegalensis under different stress conditions. Int J Food Microbiol. 2013, 163: 204-213. 10.1016/j.ijfoodmicro.2013.03.011. Gullo M, Mamlouk D, De Vero L, Giudici P: Acetobacter pasteurianus strain AB0220: cultivability and phenotypic stability over 9 years of preservation. Curr Microbiol. 2012, 64: 576-580. 10.1007/s00284-012-0112-9. Ndoye B, Weekers F, Diawara B, Guiro AT, Thonart P: Survival and preservation after freeze-drying process of thermoresistant acetic acid bacteria isolated from tropical products of Subsaharan Africa. J Food Eng. 2007, 79: 1374-1382. 10.1016/j.jfoodeng.2006.04.036. Ndoye B, Lebecque S, Dubois-Dauphin R, Tounkara L, Guiro AT, Kere C, Diawara B, Thonart P: Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar. Enzyme Microb Technol. 2006, 39: 916-923. 10.1016/j.enzmictec.2006.01.020. Santivarangkna C, Kulozik U, Foerst P: Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog. 2007, 23: 302-315. 10.1021/bp060268f. Miyamoto-Shinohara Y, Imaizumi T, Sukenobe J, Murakami Y, Kawamura S, Komatsu Y: Survival rate of microbes after freeze-drying and long-term storage. Cryobiology. 2000, 41: 251-255. 10.1006/cryo.2000.2282. Santivarangkna C, Kulozik U, Foerst P: Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. J Appl Microbiol. 2008, 105: 1-13. 10.1111/j.1365-2672.2008.03744.x. Morgan CA, Herman N, White PA, Vesey G: Preservation of micro-organisms by drying: a review. J Microbiol Methods. 2006, 66: 183-193. 10.1016/j.mimet.2006.02.017. Lievense LC, Van’t Riet K: Convective drying of bacteria. Adv Biochem Eng Biotechnol. 1994, 51: 72-86. Shacter E: Quantification and significance of protein oxidation in biological samples. Drug Metab Rev. 2000, 32: 307-326. 10.1081/DMR-100102336. Lund MN, Heinonen M, Baron CP, Estévez M: Protein oxidation in muscle foods: a review. Mol Nutr Food Res. 2011, 55: 83-95. 10.1002/mnfr.201000453. Ragoonanan V, Aksan A: Protein Stabilization. Transfus Med Hemother. 2007, 34: 246-252. 10.1159/000104678. Fredrickson JK, Li SMW, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ: Protein oxidation: key to bacterial desiccation resistance?. ISME J. 2008, 2: 393-403. 10.1038/ismej.2007.116. Castellión M, Matiacevich S, Buera P, Maldonado S: Protein deterioration and longevity of quinoa seeds during long-term storage. Food Chem. 2010, 121: 952-958. 10.1016/j.foodchem.2010.01.025. Claudette Job LR, Lovigny Y, Belghazi M, Job D: Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol. 2005, 138: 790-802. 10.1104/pp.105.062778. Linares MA, Marín-García P, Méndez D, Puyet A, Diez A, Bautista JM: Proteomic approaches to identifying carbonylated proteins in brain tissue. J Proteome Res. 2011, 10: 1719-1727. 10.1021/pr101014e. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A: Protein carbonylation in human diseases. Trends Mol Med. 2003, 9: 169-176. 10.1016/S1471-4914(03)00031-5. Møller IM, Jensen PE, Hansson A: Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 2007, 58: 459-481. 10.1146/annurev.arplant.58.032806.103946. Nystrom T: Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 2005, 24: 1311-1317. 10.1038/sj.emboj.7600599. Jung T, Höhn A, Grune T: Lipofuscin: Detection and quantification by microscopic techniques. Advanced Protocols in Oxidative Stress II. Edited by: Armstrong D. 2010, Humana Press, Springer New York Dordrecht Heidelberg London, 173-193. Methods in Molecular Biology. ISBN 978-1-60761-410-4, 594 Baynes JW: The role of AGEs in aging: causation or correlation. Exp Gerontol. 2001, 36: 1527-1537. 10.1016/S0531-5565(01)00138-3. Murthy UMN, Liang Y, Kumar PP, Sun WQ: Non-enzymatic protein modification by the Maillard reaction reduces the activities of scavenging enzymes in Vigna radiata. Physiol Plant. 2002, 115: 213-220. 10.1034/j.1399-3054.2002.1150206.x. Murthy UMN, Kumar PP, Sun WQ: Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. J Exp Bot. 2003, 54: 1057-1067. 10.1093/jxb/erg092. Kurtmann L, Skibsted LH, Carlsen CU: Browning of freeze-dried probiotic bacteria cultures in relation to loss of viability during storage. J Agric Food Chem. 2009, 57: 6736-6741. 10.1021/jf901044u. Nocker A, Fernández PS, Montijn R, Schuren F: Effect of air drying on bacterial viability: a multiparameter viability assessment. J Microbiol Methods. 2012, 90: 86-95. 10.1016/j.mimet.2012.04.015. Coulibaly I, Amenan AY, Lognay G, Fauconnier ML, Thonart P: Survival of freeze-dried Leuconostoc mesenteroides and Lactobacillus plantarum related to their cellular fatty acids composition during storage. Appl Biochem Biotechnol. 2009, 157: 70-84. 10.1007/s12010-008-8240-1. Wesche AM, Gurtler JB, Marks BP, Ryser ET: Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J Food Prot. 2009, 72: 1121-1138. Hoefman S, Van Hoorde K, Boon N, Vandamme P, De Vos P, Heylen K: Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. PloS One. 2012, 7: e34196-10.1371/journal.pone.0034196. Vriezen JA, de Bruijn FJ, Nusslein KR: Desiccation induces viable but non-culturable cells in Sinorhizobium meliloti 1021. AMB Express. 2012, 2: 6-10.1186/2191-0855-2-6. Molina MD, Anchordoquy TJ: Degradation of lyophilized lipid/DNA complexes during storage: the role of lipid and reactive oxygen species. Biochim Biophys Acta. 2008, 1778: 2119-2126. 10.1016/j.bbamem.2008.04.003. Molina MC, Anchordoquy TJ: Metal contaminants promote degradation of lipid/DNA complexes during lyophilization. Biochim Biophys Acta Biomembr. 2007, 1768: 669-677. 10.1016/j.bbamem.2006.12.004. Narayana Murthy UM, Sun WQ: Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. J Exp Bot. 2000, 51: 1221-1228. 10.1093/jexbot/51.348.1221. Cohen-Or I, Katz C, Ron EZ: AGEs secreted by bacteria are involved in the inflammatory response. PloS One. 2011, 6: e17974-10.1371/journal.pone.0017974. Markowicz Bastos D, Monaro E, Siguemoto E, Séfora M: Maillard reaction products in processed food: Pros and Cons. Food Industrial Processes - Methods and Equipment. Edited by: Valdez B. 2012 Kurtmann L, Carlsen CU, Skibsted LH, Risbo J: Water activity-temperature state diagrams of freeze-dried Lactobacillus acidophilus (La-5): influence of physical state on bacterial survival during storage. Biotechnol Prog. 2009, 25: 265-270. 10.1002/btpr.96. Marshall BJ, Coote GG, Scott WJ: Some factors affecting the viability of dried bacteria during storage in vacuo. Appl Microbiol. 1974, 27: 648-652. Löster K, Kannicht C: 2-Dimensional electrophoresis: detection of Glycosylation and influence on spot pattern. Post-translational Modifications of Proteins. Edited by: Kannicht C. 2008, Totowa Nj: Humana Press, 199-214. Methods in Molecular Biology™, 446 Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R: Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003, 329: 23-38. 10.1016/S0009-8981(03)00003-2. Oliver JD: The viable but nonculturable state in bacteria. J Microbiol. 2005, 43 Spec No: 93-100. Cabiscol E, Tamarit J, Ros J: Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol. 2000, 3: 3-8. Møller IM, Rogowska-Wrzesinska A, Rao RSP: Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J Proteomics. 2011, 74: 2228-2242. 10.1016/j.jprot.2011.05.004. Grune T, Shringarpure R, Sitte N, Davies K: Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol A: Biol Med Sci. 2001, 56: B459-B467. 10.1093/gerona/56.11.B459. Tamarit J, Cabiscol E, Ros J: Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem. 1998, 273: 3027-3032. 10.1074/jbc.273.5.3027. Cabiscol E, Piulats E, Echave P, Herrero E, Ros J: Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem. 2000, 275: 27393-27398. Teixeira P, Castro H, Kirby R: Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Lett Appl Microbiol. 1996, 22: 34-38. 10.1111/j.1472-765X.1996.tb01103.x. Williams P, Winzer K, Chan WC, Cámara M: Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans Royal Soc B: Biol Sci. 2007, 362: 1119-1134. 10.1098/rstb.2007.2039. Wilson DN, Gupta R, Mikolajka A, Nierhaus KH: Ribosomal proteins: Role in ribosomal functions. eLS. 2001, Chichester, Chichester: John Wiley & Sons, Ltd Teixeira P, Castro H, Mohacsi-Farkas C, Kirby R: Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J Appl Microbiol. 1997, 83: 219-226. 10.1046/j.1365-2672.1997.00221.x. Fu N, Chen XD: Towards a maximal cell survival in convective thermal drying processes. Food Res Int. 2011, 44: 1127-1149. 10.1016/j.foodres.2011.03.053. Madigan Michael T, Martinko John M, Stahl David A, Clark David P: Molecular biology of bacteria. Brock biology of microorganisms. 2012, 150-235. 13 Nagano T, Kojima K, Hisabori T, Hayashi H, Morita EH, Kanamori T, Miyagi T, Ueda T, Nishiyama Y: Elongation factor G is a critical target during oxidative damage to the translation system of Escherichia coli. J Biol Chem. 2012, 287: 28697-28704. 10.1074/jbc.M112.378067. Avery SV: Molecular targets of oxidative stress. Biochem J. 2011, 434: 201-210. 10.1042/BJ20101695. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A: Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med. 2006, 10: 389-406. 10.1111/j.1582-4934.2006.tb00407.x. Maisonneuve E, Fraysse L, Lignon S, Capron L, Dukan S: Carbonylated proteins are detectable only in a degradation-resistant aggregate state in Escherichia coli. J Bacteriol. 2008, 190: 6609-6614. 10.1128/JB.00588-08. Maisonneuve E, Fraysse L, Moinier D, Dukan S: Existence of abnormal protein aggregates in healthy Escherichia coli cells. J Bacteriol. 2008, 190: 887-893. 10.1128/JB.01603-07. Maisonneuve E, Ezraty B, Dukan S: Protein aggregates: an aging factor involved in cell death. J Bacteriol. 2008, 190: 6070-6075. 10.1128/JB.00736-08. Cao B, Liu J, Qin G, Tian S: Oxidative stress acts on special membrane proteins to reduce the viability of Pseudomonas syringae pv tomato. J Proteome Res. 2012, 11: 4927-4938. 10.1021/pr300446g. Desnues B, Cuny C, Gregori G, Dukan S, Aguilaniu H, Nystrom T: Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep. 2003, 4: 400-404. 10.1038/sj.embor.embor799. Castro HP, Teixeira PM, Kirby R: Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying. J Appl Microbiol. 1997, 82: 87-94. 10.1111/j.1365-2672.1997.tb03301.x. Pimpo MT, Seri S: Study of lipid changes in freeze-dried fish during storage: I: the interaction of relative humidity and tissue lipids. Boll Soc Ital Biol Sper. 1992, 68: 735-739. Yao AA, Coulibaly I, Lognay G, Fauconnier ML, Thonart P: Impact of polyunsaturated fatty acid degradation on survival and acidification activity of freeze-dried Weissella paramesenteroides LC11 during storage. Appl Microbiol Biotechnol. 2008, 79: 1045-1052. 10.1007/s00253-008-1497-z. Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C: ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 2007, 50: 452-465. 10.1111/j.1365-313X.2007.03063.x. Araseki M, Yamamoto K, Miyashita K: Oxidative stability of polyunsaturated fatty acid in phosphatidylcholine liposomes. Biosci Biotechnol Biochem. 2002, 66: 2573-2577. 10.1271/bbb.66.2573. Sheehy MRJ: A flow-cytometric method for quantification of neurolipofuscin and comparison with existing histological and biochemical approaches. Arch Gerontol Geriatr. 2002, 34: 233-248. 10.1016/S0167-4943(01)00217-5. Wislet-Gendebien S, Laudet E, Neirinckx V, Alix P, Leprince P, Glejzer A, Poulet C, Hennuy B, Sommer L, Shakhova O, Rogister B: Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences. Cell Mol Life Sci. 2012, 69: 2593-2608. 10.1007/s00018-012-0937-1.