The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems

Functional Ecology - Tập 30 Số 7 - Trang 1086-1098 - 2016
Daniel Revillini1, Catherine A. Gehring1, Nancy Collins Johnson1,2
1Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA,
2School of Earth Sciences and Environmental Sustainability, Northern Arizona University, PO Box 5694, Flagstaff, AZ, 86011, USA

Tóm tắt

Summary

The plant–soil feedback (PSF) framework has become an important theory in plant ecology, yet many ecological and evolutionary factors that influence PSFs have yet to be fully considered. Here, we discuss the importance of local adaptation among plants and root‐associated fungi and bacteria. Furthermore, we show how inclusion of the optimal resource allocation (OA) model can help predict the direction and outcome of PSFs under environmental change.

Plants and associated soil microbes have co‐evolved for millennia, generating adaptations to each other and to their local environment. This local co‐adaptation is likely generated by a suite of multidirectional exchanges of goods and services among plants, fungi and bacteria, and the constant changes in above‐ground–below‐ground interactions.

Resource limitation may be a driver of local adaptation among organisms involved in nutritional symbioses. The OA model states that when an essential resource is limited, natural selection will favour taxa that forage optimally by adjusting their biomass and energy allocation such that productivity is equally limited by all resources. Co‐adaptation will therefore respond to the local limiting resource conditions through taxa‐specific resource transfer interactions.

The OA model can help predict the outcomes of PSFs across a range of resource gradients and environmental changes such as increasing drought or atmospheric nitrogen deposition. Positive feedback is predicted in systems where resource exchange among plants and associated soil microbes can ameliorate resource limitation, or in systems where microbes provide another important service such as pathogen defence. Feedback strength is expected to diminish as resources become less limiting. Negative feedback is predicted when resources are in luxury supply and populations of opportunistic plant pathogens increase relative to commensal or mutualist microbes.

Future, field‐based studies that integrate naturally co‐occurring systems of plants, microbes and their local soil are needed to further test the hypothesis that resource availability is an effective predictor of the direction and magnitude of PSFs. A more mechanistic understanding of PSFs will help land managers and farmers to manipulate plant–microbial soil interactions to respond to environmental change and to effectively harness beneficial symbioses for plant nutrition and pathogen control.

Từ khóa


Tài liệu tham khảo

10.1016/j.funeco.2014.01.007

10.1146/annurev.phyto.41.052002.095518

10.1023/A:1004249629643

10.1146/annurev.phyto.38.1.145

10.1111/nph.13117

10.1093/bioinformatics/btv287

10.1007/s005720100097

10.1007/s00572-014-0585-4

10.1007/s005720050147

Azcón‐Aguilar C., 2015, Nutrient cycling in the mycorrhizosphere, Journal of Soil Science and Plant Nutrition, 25, 372

10.1111/j.1365-3040.2009.01926.x

10.1104/pp.124.3.949

10.1038/nature13855

10.1002/9781118297674.ch4

10.1016/j.tplants.2012.04.001

10.3389/fmicb.2014.00491

10.1111/nph.13239

10.1146/annurev-ecolsys-112414-054306

10.2307/2960528

10.1016/j.tree.2010.05.004

10.1023/A:1020544919072

10.1146/annurev.es.16.110185.002051

10.1146/annurev.micro.091208.073504

10.1046/j.1469-8137.2002.00397.x

10.1146/annurev-arplant-050312-120106

10.1016/j.tplants.2013.06.004

10.1111/j.1365-2745.2005.01043.x

10.1038/nature11688

10.1029/1999GB900014

10.1016/j.soilbio.2009.11.024

10.1023/A:1015792204633

Curl E.A., 2012, The Rhizosphere

10.1111/j.1574-6941.2011.01103.x

10.1111/mec.12541

10.1038/ismej.2013.151

10.1051/forest:2006040

10.1139/cjb-2013-0091

10.1080/713610853

10.1073/pnas.1414592112

10.1093/jxb/erm009

10.1073/pnas.1215210110

10.1111/j.1469-8137.2007.02191.x

10.1126/science.1136674

10.1111/mec.12503

10.6064/2012/963401

10.1128/AEM.05255-11

10.1007/s11104-008-9814-y

10.1111/ele.12451

10.1111/j.1461-0248.2007.01139.x

10.1111/nph.13288

10.1073/pnas.1500709112

10.1111/j.1574-6941.2006.00086.x

10.1007/BF00043031

10.1111/1365-2435.12002

10.1098/rspb.2002.2312

10.1128/AEM.02280-15

10.1111/j.1469-8137.2009.03110.x

10.1111/nph.13115

10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2

10.1890/07-1394.1

10.1073/pnas.0906710107

10.1111/ele.12085

10.1111/nph.13172

10.1007/s10886-012-0134-6

10.1111/j.1461-0248.2006.00953.x

10.1111/1365-2745.12046

10.1139/cjb-2014-0063

10.1146/annurev.ecolsys.39.110707.173423

10.1038/nature01931

10.3732/ajb.1200558

10.1046/j.1461-0248.2000.00131.x

10.1038/ng.3223

10.1111/mec.13363

10.1111/j.1461-0248.2008.01209.x

10.1016/j.funeco.2014.12.005

10.1016/j.tree.2007.10.008

10.1007/s11104-009-0042-x

10.1038/nbt.2676

10.1111/j.1469-8137.2011.03790.x

10.1073/pnas.1202319109

10.1007/s00572-010-0348-9

10.1111/j.1420-9101.2010.02114.x

10.1111/1462-2920.12619

10.1146/annurev.micro.62.081307.162918

10.1038/nature09273

10.1111/1365-2745.12172

10.1111/j.1469-8137.2007.02058.x

10.1007/s00344-009-9079-6

10.1111/j.1469-8137.2008.02436.x

10.1007/s11284-012-0937-5

10.1139/b97-892

10.1146/annurev.es.03.110172.001531

10.1890/06-0442

10.1038/nature12851

10.1111/1365-2745.12381

10.1111/j.1438-8677.2012.00596.x

10.1111/ele.12335

10.1128/MMBR.00051-12

10.1016/S0169-5347(00)89157-0

10.2307/2261180

10.1016/S0169-5347(00)89123-5

10.1111/j.1574-6941.2009.00833.x

10.1016/j.jplph.2014.08.019

Pachauri R.K. Allen M.R. Barros V.R. Broome J. Cramer W. Christ R.et al. (2014)Climate Change 2014: Synthesis Report. Contribution of Working Groups I II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 151.

10.1111/j.1365-2745.2005.01017.x

10.3389/fpls.2011.00100

10.1111/nph.12105

10.1038/nrmicro3109

10.1146/annurev-phyto-082712-102340

10.1007/s00374-015-0996-1

10.1111/j.1469-8137.2011.03952.x

10.1146/annurev.ecolsys.39.110707.173454

10.1007/s11104-014-2369-1

10.1111/1365-2745.12054

10.1146/annurev.es.15.110184.002515

10.1007/s11104-008-9568-6

10.1046/j.1469-8137.2003.00704.x

10.1146/annurev-ecolsys-102710-145034

10.1046/j.1365-2435.1998.00208.x

10.1073/pnas.91.25.11841

10.1007/s11104-009-0202-z

10.1016/S0734-9750(99)00014-2

10.1038/ismej.2007.53

10.1046/j.0028-646x.2001.00196.x

10.1016/j.tree.2006.06.018

10.1007/s005720050151

10.1038/ismej.2010.5

10.1111/ele.12538

10.1890/09-1858.1

10.1016/j.fbr.2012.01.001

Smith S.E., 2008, Mycorrhizal Symbiosis

10.1104/pp.111.174581

Sorensen J., 1997, Modern Soil Microbiology, 21

10.2307/3793102

10.1111/j.1472-4669.2009.00194.x

10.1016/j.tree.2006.11.007

10.1111/j.1574-6941.2007.00337.x

10.1073/pnas.1501540112

10.2307/2259348

10.1111/1365-2435.12690

10.1111/nph.13312

10.1098/rsbl.2011.0874

10.1098/rstb.2013.0119

10.1016/j.foreco.2005.11.002

10.1111/j.1462-5822.2011.01736.x

10.1126/science.1094875

10.1038/ismej.2008.41

10.1016/j.pedobi.2009.10.002

10.1111/nph.13113

10.1073/pnas.1315980111

10.1139/b04-082

10.1111/1365-2435.12648

10.1016/j.tplants.2008.10.004

10.1016/j.funeco.2011.04.001

10.1016/j.apsoil.2013.03.007