The role of gap junction membrane channels in development

Journal of bioenergetics - Tập 28 - Trang 379-385 - 1996
Cecilia W. Lo1
1Biology Department, University of Pennsylvania, Philadelphia

Tóm tắt

In most developmental systems, gap junction-mediated cell-cell communication (GJC) can be detected from very early stages of embryogenesis. This usually results in the entire embryo becoming linked as a syncytium. However, as development progresses, GJC becomes restricted at discrete boundaries, leading to the subdivision of the embryo into communication compartment domains. Analysis of gap junction gene expression suggests that this functional subdivision of GJC may be mediated by the differential expression of the connexin gene family. The temporal-spatial pattern of connexin gene expression during mouse embryogenesis is highly suggestive of a role for gap junctions in inductive interactions, being regionally restricted in distinct developmentally significant domains. Using reverse genetic approaches to manipulate connexin gene function, direct evidence has been obtained for the connexin 43 (Cx43) gap junction gene playing a role in mammalian development. The challenges in the future are the identification of the target cell populations and the cell signaling processes in which Cx43-mediated cell-cell interactions are critically required in mammalian development. Our preliminary observations suggest that neural crest cells may be one such cell population.

Tài liệu tham khảo

Bennett, M. V. L., and Trinkaus, J. P. (1970).J. Cell Biol. 44, 592–610. Bergohoffen, J., Scherer, S. S., Wang, S., Oronzi Scott, M., Bone, L. J., Paul, D. L., Chen, K., Lensch, M. W., Chance, P. F., and Fischbeck, K. H. (1993).Science 262, 2039–2042 Blennerhassett, M., and Caveney, S. (1984).Nature 24, 361–364. Brisette, J. L., Kumar, N. L., Gilula, N. B., Hall, J. E., and Dotto G. P. (1994).Proc. Natl. Acad. Sci. USA 91, 6435–6457. Britz-Cunningham, S. H., Shah, M. M., Zuppan, C. W., and Fletcher, W. H. (1995).New Engl. J. Med. 332, 1323–1329. Bruzzone, R., Haefliger, J.-A., Gimlich, R. L., and Paul, D. L. (1993)Mol. Biol. Cell 4, 7–20. Bruzzone, R., White, T. W., Scherer, S. S., Fischbeck, K. H., and Paul, D. L. (1994).Neuron 13, 1253–1260. Crick, F. C. H., and Lawrence, P. A. (1975). Compartments and polyclones in insect development.Science 189, 340–347. Ewart, J., Cohen, M. F., Lazatin, B. O., Park, S. M. J., Villabon, S., Huang, S., and Lo, C. W. (1995).Mol. Biol. Cell 6, 297a. Furshpan, E. J., and Potter, D. D. (1968).Curr. Top. Dev. Biol. 3, 95–126. Garcia-Bellido, A. (1975).Ciba Found. Symp. 29, 161–182. Ghosh, S., Safarik, R., Klier, G., Monosov, E., Gilula, N. B., and Kumar, N. M. (1995).Mol. Biol Cell 6, 189a. Guthrie, S. (1984).Nature 311, 149–151. Ito, S., and Hori, N. (1966).J. Gen. Physiol. 19, 1019–1027. Ito, S., and Loewenstein, W. R. (1969).Dev. Biol. 19, 228–243. Kalimi, G., and Lo, C. W. (1988).J. Cell Biol. 107, 241–255. Kalimi, G., and Lo, C. W., (1989).J. Cell Biol. 109, 3015–3026. Kirby, M. (1993).Trends Cardiovasc. Med. 3, 18–23. Koedood, M., Fichtel, A., Meier, P., and Mitchell, P. J. (1995).J. Virol. 69, 2194–2207. Lawrence, P. A. (1966).J. Exp. Biol. 44, 607–620. Lo, C. W., and Gilula, N. B. (1979a).Cell 18, 399–409. Lo, C. W. and Gilula, N. B. (1979b).Cell 18, 411–422. Locke, M. (1967).Adv. Morphogenesis 6, 33–88. Loewenstein, W. R., and Rose, B. (1992).Semi. Cell Biol. 3, 59–79. Michaelke, W. (1977).J. Membr Biol. 33, 1–20. Moreno, A. P., Fishman, G. I., Beyer, E. C., and Spray, D. C. (1995).Prog. Cell Res. 4, 405–410. Nishi, M., Kumar, N. M., and Gilula, N. B. (1991).Dev. Biol. 146, 117–130. Olson, D. J., and Moon, R. T. (1992).Dev. Biol. 151, 204–212. Olson, D. J., Christian, J. L., and Moon, R. T. (1991).Science 252, 1173–1176. Pauken, C. M., and Lo, C. W. (1995).Mol. Reprod. Dev. 41, 195–203. Paul, D. L., Yu, K., Bruzzone, R., Gimlich, R. L., and Goodneough, D. A. (1995).Development 121, 371–381. Reaume, A. G., de Sousa, P. A., Kulkarni, S., Langille, B. L., Zhu, D., Davies, T. C., Junija, S. C., Kidder, G. M., and Rossant, G. M. (1995).Science 267, 1831–1834. Ruangvoravat, C. P., and Lo, C. W. (1992).Dynamics 193, 70–82. Serras, F., Damen, P., Dictus, W. J. A. G., Notenboom, R. G. E., and Van den Biggelaar, J. A. M. (1989).Roux. Arch. Dev. Biol. 198, 191–200. Sheridan, J. D. (1966).J. Cell Biol. 31, C1-C5. Sheridan, J. D. (1968).J. Cell Biol. 37, 650–659. Steinberg, T. H., Civitelli, R., Geist, S. T., Robertson, A. J., Hick, E., Veenstra, R. D., Wang, H.-Z., Warlow, P. M., Westphale, E. M., Laing, J. G., and Beyer, E. C. (1994).EMBO J 13, 744–750. Stumpf, H. (1966).Nature 212, 430–431. Sullivan, R., and Lo, C. W. (1995).J. Cell Biol. 130, 419–429. Sullivan, R., Villabon, S., Park, J., Patel, N., Lazatin, J., Lazatin, B., Cohen, M., Park, J., and Lo, C. W. (1995).Mol. Biol. Cell 6, 300a. Tomasetto, C., Neveu, M. J., Daley, J., Horan, P. K., and Sager, R. (1993).J. Cell Biol. 122, 157–167. Valdimarsson, G., DeSousa, P. A., Beyer, E. C., Paul, D. L., and Kidder, G. M. (1991).Mol. Reprod. Dev. 30, 18–26. Veenstra, R. D., Wang, H.-Z., Beyer, E. C., and Brink, P. R. (1994).Circ. Res. 75, 483–490. Warner, A. E., and Lawrence, P. A. (1982).Cell 28, 243–252. Weir, M. P., and Lo, C. W. (1982).Proc. Natl. Acad. Sci. USA 79, 3232–3235. Weir, M. P., and Lo, C. W. (1984).Dev. Biol. 102, 130–146. Weir, M. P., and Lo, C. W. (1985).Dev. Biol. 110, 84–90. Werner, R., Levine, E., Rabadan-Diehl, C., and Dahl, G. (1989).Proc. Natl. Acad. Sci. USA 86, 5380–5384. Wilkinson, D. G., Bailes, J. A., and McMahon, A. P. (1987).Cell 50, 79–88. Yancey, S. B., Biswal, S. and Revel, J. P. (1992).Development 114, 203–212.