Chỉ số gánh nặng ung thư dư (RCB) như một dấu hiệu tiên lượng hợp lệ ở bệnh nhân ung thư vú sau hóa trị liệu neoadjuvant

BMC Cancer - Tập 24 - Trang 1-12 - 2024
Xin Xu1,2, Wei Zhao3, Cuicui Liu4, Yongsheng Gao5, Dawei Chen5, Meng Wu5, Chao Li5, Xinzhao Wang5, Xiang Song5, Jinming Yu5, Zhaoyun Liu5, Zhiyong Yu5
1Tianjin Medical University Cancer Institute & Hospital,National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
2Departments of Oncology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
3Affiliated Hospital of Jining Medical University, Jining, China
4Liaocheng People’s Hospital, Liaocheng, China
5Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China

Tóm tắt

Chỉ số gánh nặng ung thư dư (RCB) được đề xuất như một tiêu chí đánh giá phản ứng trong bệnh nhân ung thư vú điều trị bằng hóa trị liệu neoadjuvant (NAC). Nghiên cứu này đánh giá sự liên quan của RCB với sống không tái phát (RFS). Dữ liệu lâm sàng của 254 bệnh nhân ung thư vú đã nhận NAC từ năm 2016 đến 2020 đã được thu thập hồi cứu. Mối quan hệ giữa các yếu tố lâm sàng - bệnh lý và RFS được đánh giá bằng mô hình hồi quy Cox tỷ lệ nguy cơ. Các ước lượng RFS được xác định bằng phân tích Kaplan-Meier (K-M) và so sánh bằng kiểm định log-rank. Phân tích hồi quy logistic đa biến được sử dụng để đánh giá các yếu tố nguy cơ liên quan đến RCB. Các đường cong đặc trưng nhận diện (ROC) cho thấy tiềm năng của RCB và hệ thống phân loại MP như là các dấu hiệu sinh học cho RFS. Tại thời điểm theo dõi trung bình là 52 tháng, 59 bệnh nhân (23.23%) phát triển tái phát. Hồi quy Cox đa biến cho thấy tuổi cao hơn (P = 0.022), giai đoạn T bệnh lý cao sau NAC (P = 0.023) và điểm RCB cao (P = 0.003) là các yếu tố nguy cơ cho sự tái phát. Kết quả của phân tích hồi quy logistic đa biến chỉ ra rằng RCB 0 (phản ứng hoàn toàn bệnh lý [pCR]) liên quan đến bệnh nhân HER2 dương tính (P = 0.002) và bệnh nhân ung thư vú âm tính ba (TNBC) (P = 0.013). Thêm vào đó, hệ thống điểm RCB và MP đóng vai trò như các dấu hiệu tiên lượng cho bệnh nhân đã nhận NAC, với diện tích dưới đường cong (AUC) lần lượt là 0.691 và 0.342. Những dữ liệu này cho thấy RCB có thể được áp dụng tương đương để dự đoán RFS ở bệnh nhân Trung Quốc điều trị NAC. Việc áp dụng RCB có thể giúp hướng dẫn việc lựa chọn chiến lược điều trị.

Từ khóa

#ung thư vú #hóa trị liệu neoadjuvant #chỉ số gánh nặng ung thư dư #hồi quy Cox #sống không tái phát #dấu hiệu sinh học

Tài liệu tham khảo

Nair VA, Valo S, Peltomäki P, Bajbouj K, Abdel-Rahman WM. Oncogenic potential of Bisphenol A and common environmental contaminants in human mammary epithelial cells. Int J Mol Sci. 2020;21(10):3735, 1–16. Liu Z, Shan J, Yu Q, Wang X, Song X, Wang F, Li C, Yu Z, Yu J. Real-World Data on Apatinib Efficacy - Results of a Retrospective Study in Metastatic Breast Cancer Patients Pretreated With Multiline Treatment. Front Oncol. 2021;11:643654, 1–8. Hesse E, Schröder S, Brandt D, Pamperin J, Saito H, Taipaleenmäki H. Sclerostin inhibition alleviates breast cancer–induced bone metastases and muscle weakness. JCI Insight. 2019;4:e125543, 1–17. Sung H, Ferlay J, Siegel R, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. Li Yizhen, Zheng Jinxin, Deng Yujiao, Deng Xinyue, Lou Weiyang, Wei Bajin, Xiang Dong, Jingjing Hu, Zheng Yi, Peng Xu, Yao Jia, Zhai Zhen, Zhou Linghui, Yang Si, Ying Wu, Kang Huafeng, Dai Zhijun. Global burden of female breast cancer: age-period-cohort analysis of incidence trends from 1990 to 2019 and forecasts for 2035. Front Oncol. 2022;12:891824, 1–13. Granzier RWY, Ibrahim A, Primakov SP, Samiei S, van Nijnatten TJA, de Boer M, Heuts EM, Hulsmans F, Chatterjee A, Lambin P, Lobbes MBI, Woodruff HC, Smidt ML. MRI-based radiomics analysis for the pretreatment prediction of pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients: a multicenter study. Cancers. 2021;13:2447. Li Y, Zhou Y, Mao F, Lin Y, Zhang X, Shen S, Sun Q. The diagnostic performance of minimally invasive biopsy in predicting breast pathological complete response after neoadjuvant systemic therapy in breast cancer: a meta-analysis. Front Oncol. 2020;10:933. Romine PE, Peterson LM, Kurland BF, Byrd DW, Novakova-Jiresova A, Muzi M, Specht JM, Doot RK, Link JM, Krohn KA, Kinahan PE, Mankoff DA, Linden HM. 18F-fluorodeoxyglucose (FDG) PET or 18F-fluorothymidine (FLT) PET to assess early response to aromatase inhibitors (AI) in women with ER+ operable breast cancer in a window-of-opportunity study. Breast Cancer Res. 2021;88:88, 1–11. Caparica R, Lambertini M, Pondé N, Fumagalli D, de Azambuja E, Piccart M. Post-neoadjuvant treatment and the management of residual disease in breast cancer: state of the art and perspectives. Ther Adv Med Oncol. 2019;11:1–23. Nuvoli S, Galassi S, Gelo I, Rocchitta G, Fancellu A, Serra PA, Madeddu G, Spanu A. The role of molecular breast imaging in predicting complete tumor response to treatment and residual tumor extent following neoadjuvant therapy. Oncol Rep. 2018;39:2055–62. Lerebours F, Pulido M, Fourme E, Debled M, Becette V, Bonnefoi H, Rivera S, MacGrogan G, Mouret-Reynier M, de Lara CT, Pierga J, Breton-Callu C, Venat-Bouvet L, Mathoulin-Pélissier S, de la Motte Rouge T, Dalenc F, Sigal B, Bachelot T, Lemonnier J, Quenel-Tueux N. Predictive factors of 5-year relapse-free survival in HR+/HER2- breast cancer patients treated with neoadjuvant endocrine therapy: pooled analysis of two phase 2 trials. Brit J Cancer. 2020;122:759–65. Volders JH, Negenborn VL, Spronk PE, Krekel NMA, Schoonmade LJ, Meijer S, Rubio IT, van den Tol MP. Breast-conserving surgery following neoadjuvant therapy-a systematic review on surgical outcomes. Breast Cancer Res Tr. 2018;168:1–12. Nitz U, Gluz O, Graeser M, Christgen M, Kuemmel S, Grischke EM, Braun M, Augustin D, Potenberg J, Krauss K, Schumacher C, Forstbauer H, Reimer T, Stefek A, Fischer HH, Pelz E, Zu Eulenburg C, Kates R, Wuerstlein R, Kreipe HH, Harbeck N, WSG-ADAPT investigators. De-escalated neoadjuvant pertuzumab plus trastuzumab therapy with or without weekly paclitaxel in HER2-positive, hormone receptor-negative, early breast cancer (WSG-ADAPT-HER2+/HR-): survival outcomes from a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2022;23:625–35. Yau C, Osdoit M, van der Noordaa M, Shad S, Wei J, de Croze D, Hamy AS, Laé M, Reyal F, Sonke GS, Steenbruggen TG, van Seijen M, Wesseling J, Martín M, Del Monte-Millán M, López-Tarruella S; I-SPY 2 Trial Consortium; Boughey JC, Goetz MP, Hoskin T, Gould R, Valero V, Edge SB, Abraham JE, Bartlett JMS, Caldas C, Dunn J, Earl H, Hayward L, Hiller L, Provenzano E, Sammut SJ, Thomas JS, Cameron D, Graham A, Hall P, Mackintosh L, Fan F, Godwin AK, Schwensen K, Sharma P, DeMichele AM, Cole K, Pusztai L, Kim MO, van 't Veer LJ, Esserman LJ, Symmans WF. Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: a multicentre pooled analysis of 5161 patients . Lancet Oncol. 2022;23:149–60. Müller HD, Posch F, Suppan C, Bargfrieder U, Gumpoldsberger M, Hammer R, Hauser H, Dandachi N, Prein K, Stoeger H, Lax S, Balic M. Validation of Residual Cancer Burden as Prognostic Factor for Breast Cancer Patients After Neoadjuvant Therapy. Ann Surg Oncol. 2019;26:4274–83. Symmans WF, Wei C, Gould R, Yu X, Zhang Y, Liu M, Walls A, Bousamra A, Ramineni M, Sinn B, Hunt K, Buchholz TA, Valero V, Buzdar AU, Yang W, Brewster AM, Moulder S, Pusztai L, Hatzis C, Hortobagyi GN. Long-Term Prognostic Risk After Neoadjuvant Chemotherapy Associated With Residual Cancer Burden and Breast Cancer Subtype. J Clin Oncol. 2017;35:1049–60. Miglietta F, Ragazzi M, Fernandes B, Griguolo G, Massa D, Girardi F, Bottosso M, Bisagni A, Zarrilli G, Porra F, Iannaccone D, Dore L, Gaudio M, Santandrea G, Fassan M, Lo Mele M, De Sanctis R, Zambelli A, Bisagni G, Guarneri V, Dieci MV. A prognostic model based on residual cancer burden and tumor-infiltrating lymphocytes on residual disease after neoadjuvant therapy in HER2+ breast cancer. Clin Cancer Res. 2023;29:3429–37. Naidoo K, Parham DM, Pinder SE. An audit of residual cancer burden reproducibility in a UK context. Histopathology. 2017;70:217–22. Suppan C, Posch F, Mueller HD, Mischitz N, Steiner D, Klocker EV, Setaffy L, Bargfrieder U, Hammer R, Hauser H, Jost PJ, Dandachi N, Lax S, Balic M. Patterns of recurrence after neoadjuvant therapy in early breast cancer, according to the residual cancer burden index and reductions in neoadjuvant treatment intensity. Cancers. 2021;13:2492, 1–12. Yau C, Osdoit M, van der Noordaa M, Shad S, Wei J, de Croze D, Hamy AS, Lae M, Reyal F, Sonke GS, et al. Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: a multicentre pooled analysis of 5161 patients. Lancet Oncol. 2022;23:149–60. Vignoli A, Muraro E, Miolo G, Tenori L, Turano P, Di Gregorio E, Steffan A, Luchinat C, Corona G. Effect of estrogen receptor status on circulatory immune and metabolomics profiles of HER2-positive breast cancer patients enrolled for neoadjuvant targeted chemotherapy. Cancers. 2020;12:314, 1–16. Zhou Z, Huang F, Shrivastava I, Zhu R, Luo A, Hottiger M, Bahar I, Liu Z, Cristofanilli M, Wan Y. New insight into the significance of KLF4 PARylation in genome stability, carcinogenesis, and therapy. EMBO Mol Med. 2020;12(12):e12391, 1–27. Hong J, Wu J, Huang O, He J, Zhu L, Chen W, Li Y, Chen X, Shen K. Early response and pathological complete remission in Breast Cancer with different molecular subtypes: a retrospective single center analysis. J Cancer. 2020;11(23):6916–24. Song D, Man X, Jin M, Li Q, Wang H, Du Y. A Decision-Making Supporting Prediction Method for Breast Cancer Neoadjuvant Chemotherapy. Front Oncol. 2021;10:592556, 1–10. Wang H, Mao X. Evaluation of the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Drug Des Devel Ther. 2020;14:2423–33. Troxell ML, Gupta T. Neoadjuvant Therapy in Breast Cancer Histologic Changes and Clinical Implications. Surg Pathol Clin. 2022;15:57–74. Luen SJ, Salgado R, Dieci MV, Vingiani A, Curigliano G, Gould RE, Castaneda C, D Alfonso T, Sanchez J, Cheng E, Andreopoulou E, Castillo M, Adams S, Demaria S, Symmans WF, Michiels S, Loi S. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30:236–42. Shang Y, Wang Q, Li J, Liu H, Zhao Q, Huang X, Dong H, Chen W, Gui R, Nie X. Zirconia Nanoparticles Induce HeLa Cell Death Through Mitochondrial Apoptosis and Autophagy Pathways Mediated by ROS. Front Chem. 2021;9:522708, 1–14. Yamada K, Nishimura T, Wakiya M, Satoh E, Fukuda T, Amaya K, Bando Y, Hirano H, Ishikawa T. Protein co-expression networks identified from HOT lesions of ER+HER2–Ki-67high luminal breast carcinomas. Sci Rep-Uk. 2021;11:1705, 1–13. Xie LY, Wang K, Chen HL, Shi YX, Zhang YQ, Lin HY, Liang YK, Xiao YS, Wu ZY, Yuan ZY, Qiu SQ. Markers Associated With Tumor Recurrence in Patients With Breast Cancer Achieving a Pathologic Complete Response After Neoadjuvant Chemotherapy. Front Oncol. 2022;12:860475, 1–13. Asaoka M, Narui K, Suganuma N, Chishima T, Yamada A, Sugae S, Kawai S, Uenaka N, Teraoka S, Miyahara K, Kawate T, Sato E, Nagao T, Matsubara Y, Gandhi S, Takabe K, Ishikawa T. Clinical and pathological predictors of recurrence in breast cancer patients achieving pathological complete response to neoadjuvant chemotherapy. Eur J Surg Oncol. 2019;45:2289–94. BrauNATein LZ, Taghian AG, Niemierko A, Salama L, Capuco A, Bellon JR, Wong JS, Punglia RS, MacDonald SM, Harris JR. Breast-cancer subtype, age, and lymph node status as predictors of local recurrence following breast-conserving therapy. Breast Cancer Res Tr. 2017;161(1):173–80. Wong FY, Tham WY, Nei WL, Lim C, Miao H. Age exerts a continuous effect in the outcomes of Asian breast cancer patients treated with breast-conserving therapy. Cancer Commun. 2018;38(1):410–20. Riaz N, Jeen T, Whelan TJ, Nielsen TO. Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer. Cancers (Basel). 2023;15:1260, 1–34. Gillon P, Touati N, Breton-Callu C, Slaets L, Cameron D, Bonnefoi H. Factors predictive of locoregional recurrence following neoadjuvant chemotherapy in patients with large operable or locally advanced breast cancer: an analysis of the EORTC 10994/BIG 1–00 study. Eur J Cancer. 2017;79:226–34. Chou H, Kuo W, Yu C, Tsai H, Shen S, Chu C, Yu M, Lo Y, Dabora MA, Chang H, Lin Y, Ueng S, Chen S. Impact of age on pathological complete response and locoregional recurrence in locally advanced breast cancer after neoadjuvant chemotherapy. Biomed J. 2019;42:66–74. Spring L, Greenup R, Niemierko A, Schapira L, Haddad S, Jimenez R, Coopey S, Taghian A, Hughes KS, Isakoff SJ, Ellisen LW, Smith BL, Specht M, Moy B, Bardia A. Pathologic Complete Response After Neoadjuvant Chemotherapy and Long-Term Outcomes Among Young Women With Breast Cancer. J Natl Compr Canc Ne. 2017;15:1216–23. Haque W, Verma V, Hatch S, Suzanne Klimberg V, Brian Butler E, Teh BS. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res Tr. 2018;170(3):1–9. Chung YR, Woo JW, Ahn S, Kang E, Kim E, Jang M, Kim SM, Kim SH, Kim JH, Park SY. Prognostic implications of regression of metastatic axillary lymph nodes after neoadjuvant chemotherapy in patients with breast cancer. Sci Rep-Uk. 2021;11(1):12128, 1–13. Gradishar William J, Moran Meena S, Abraham Jame. NCCN Guidelines® Insights: Breast Cancer, Version 4.2023. J Natl Compr Canc Netw. 2023;21:594, 1–15. Kim JY, Oh JM, Lee SK, Yu J, Lee JE, Kim SW, Nam SJ, Park YH, Ahn JS, Kim K, Im YH. Improved Prediction of Survival Outcomes Using Residual Cancer Burden in Combination With Ki-67 in Breast Cancer Patients Underwent Neoadjuvant Chemotherapy. Front Oncol. 2022;12:903372, 1–9. Asano Y, Kashiwagi S, Goto W, Takada K, Takahashi K, Hatano T, Noda S, Takashima T, Onoda N, Tomita S, Motomura H, Ohsawa M, Hirakawa K, Ohira M. Prediction of survival after neoadjuvant chemotherapy for breast cancer by evaluation of tumor-infiltrating lymphocytes and residual cancer burden. BMC Cancer. 2017;17:888, 1–10. Pinard C, Debled M, Ben Rejeb H, Velasco V, Tunon De Lara C, Hoppe S, Richard E, Brouste V, Bonnefoi H, MacGrogan G. Residual cancer burden index and tumor-infiltrating lymphocyte subtypes in triple-negative breast cancer after neoadjuvant chemotherapy. Breast Cancer Res Tr. 2020;179:11–24. Qiu P, Zhao R, Wang W, Sun X, Chen P, Liu Y, Liu Z, Wang Y. Internal Mammary Sentinel Lymph Node Biopsy in Clinically Axillary Lymph Node-Positive Breast Cancer: Diagnosis and Implications for Patient Management. Ann Surg Oncol. 2020;27:375–83. Liu C, Wang W, Meng X, Sun B, Cong Y, Liu J, Wang Q, Liu G, Wu S. Albumin/globulin ratio is negatively correlated with PD-1 and CD25 mRNA levels in breast cancer patients. OncoTargets Ther. 2018;11:2131–9. Qiu PF, Zhao RR, Wang W, Sun X, Chen P, Liu YB, Liu ZG, Wang YS. Internal Mammary Sentinel Lymph Node Biopsy in Clinically Axillary Lymph Node-Positive Breast Cancer: Diagnosis and Implications for Patient Management. Ann Surg Oncol. 2020;27:375–83. Qiu P, Wang Y. ASO Author Reflections: Internal Mammary Sentinel Lymph Node Biopsy—Time for the Back of Internal Mammary Staging? Ann Surg Oncol. 2020;27:384–5. Liu C, Wang Q, Sun B, Meng X, Li L, Yang L, Cong Y, Liu J, Xuan L, Huang Y, Wu S. Low BMI is correlated with increased TGF-β and IL-10 mRNA levels in the peripheral blood of breast cancer patients. IUBMB Life. 2018;70:237–45.