The quantum Hamilton–Jacobi formalism in complex space
Tóm tắt
Từ khóa
Tài liệu tham khảo
Leacock, R.A., Padgett, M.S.: Hamilton–Jacobi theory and quantum action variables. Phys. Rev. Lett. 50, 3 (1983)
Leacock, R.A., Padgett, M.S.: Hamilton–Jacobi action angle quantum mechanics. Phys. Rev. D28, 2491 (1983)
Bhalla, R.S., Kapov, A.K., Panigrahi, P.K.: Quantum Hamilton–Jacobi formalism and its bound state spectra. Am J. Phys. 65, 1187 (1997)
Baker-Jarvis, J., Kabos, P.: Modified de Broglie approach applied to the Schrödinger and Klein–Gordon equations. Phys. Rev. A 68, 042110 (2003)
Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)
Yang, C.-D.: Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators and proof of quantization axiom. Ann. Phys. 321, 2876 (2006)
Notalle, L.: Scaling relativity and fractal space time: applications to quantum physics, cosmology and chaotic systems. Chaos Solitons Fract. 7, 877 (1996)
Bracken, P.: A hidden symmetry in an excited state of the one-dimensional hubbard model. Phys. Letts. A 243, 75–79 (1998)
Keller, J.B.: Corrected Bohr–Sommerfeld quantum conditions for nonseparable systems. Ann. Phys. 4, 180 (1958)
Bracken, P.: The complex quantum potential and wave particle duality. Int. J. Mod. Phys. B 21, 4473 (2007)
Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw Hill, New York (1965)
Schwinger, J.: Quantum Kinematics and Dynamics. W. A. Benjamin Inc, New York (1970)
Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables I. Phys. Rev. 85, 166 (1952)