The quantitative significance of <i>Syntrophaceae</i> and syntrophic partnerships in methanogenic degradation of crude oil alkanes

Wiley - Tập 13 Số 11 - Trang 2957-2975 - 2011
Neil Gray1, Angela Sherry1, Russell J. Grant1, Arlene K. Rowan1, Casey R. J. Hubert1, Cameron M. Callbeck2,3, Carolyn M. Aitken1, D. M. Jones1, Jennifer J. Adams4, Steve Larter3, Ian M. Head1
1School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
2Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, UK.
3School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
4Departments of Geoscience

Tóm tắt

SummaryLibraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell‐C)/g(alkane‐C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell‐C)/g(alkane‐C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen‐oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella.

Từ khóa


Tài liệu tham khảo

10.1128/AEM.01752-06

10.1016/S0022-2836(05)80360-2

10.1128/mr.59.1.143-169.1995

10.1038/35008145

10.1093/nar/gkf450

10.1128/AEM.71.12.7724-7736.2005

10.1128/AEM.00556-06

10.1007/BF00164509

Bakermans C., 2002, Diversity of 16S rDNA and naphthalene dioxygenase genes from coal‐tar‐waste‐contaminated aquifer waters, Microb Ecol, 44, 95

10.1073/pnas.91.5.1609

10.1080/01490450701456453

10.1046/j.1462-2920.2002.00337.x

10.1128/AEM.01030-06

Clarke K.R., 2001, Change in Marine Communities: An Approach to Statistical Analysis and Interpretation

Cole J.R., 2007, The ribosomal database project (RDP‐II): introducing myRDP space and quality controlled public data, Nucl Acids Res, 35, D169, 10.1093/nar/gkl889

van De Peer Y., 1994, Treecon for windows – a software package for the construction and drawing of evolutionary trees for the microsoft windows environment, Comput Appl Biosci, 10, 569

10.1128/AEM.64.10.3869-3877.1998

10.1128/AEM.01428-08

10.1038/ismej.2007.111

10.1007/s10295-006-0095-2

10.1128/AEM.60.1.313-322.1994

10.1093/nar/17.19.7843

10.1016/S0580-9517(08)70239-3

10.1099/00207713-42-4-568

10.1128/AEM.00119-08

10.1111/j.1462-2920.2010.02282.x

10.1016/j.resmic.2005.03.009

10.1046/j.1462-2920.2002.00280.x

10.1016/j.mimet.2005.07.006

10.1007/s00792-009-0237-3

10.1016/S0065-2164(10)72005-0

10.1099/ijs.0.64522-0

10.1007/s00299-001-0399-7

10.1128/AEM.00362-07

10.1264/jsme2.23.118

10.1099/00207713-50-4-1601

10.1038/nature02134

10.1007/978-3-540-77587-4_232

Hippensteel D., 1997, Perspectives on environmental risk management at hydrocarbon contaminated Sites, Environ Geosci, 4, 127

10.1128/AEM.01676-06

10.1016/S0888-7543(05)80277-0

10.1099/00207713-49-2-367

10.1007/s00792-003-0324-9

10.1007/s002030050685

10.1038/nature06484

10.1016/B978-1-4832-3211-9.50009-7

10.1111/j.1462-2920.2005.00754.x

10.1021/es60152a601

10.1111/j.1462-2920.2006.01122.x

10.1093/nar/gkn689

10.1099/00207713-49-2-545

10.1093/nar/gkh293

10.1016/S0928-8244(03)00224-4

10.1016/j.ibiod.2010.11.009

10.1111/j.1462-2920.2006.01053.x

10.1128/AEM.66.2.700-711.2000

10.1128/AEM.63.9.3367-3373.1997

10.1073/pnas.85.8.2444

10.1007/s002849900311

10.1021/es1028487

10.1128/AEM.60.4.1241-1248.1994

Saitou N., 1987, The neighbour joining method: a new method for constructing phylogenetic trees, Mol Biol Evol, 4, 406

10.1099/00207713-46-4-1145

10.1111/j.1462-2920.2006.01133.x

10.2144/000112018

10.1128/AEM.70.7.4048-4052.2004

10.1111/j.1472-4669.2007.00123.x

10.1021/es060993m

10.1038/nrmicro1931

10.1021/es0264495

van Verseveld H.W., 2004, Molecular Microbial Ecology Manual, 1373

10.1128/JB.00356-09

10.1016/j.ibiod.2010.12.010

10.1128/AEM.00062-07

10.1007/978-1-4757-2191-1_21

10.1128/AEM.01951-07

10.1002/bit.20347

10.1038/45777

10.1007/BF00402133