The proteomics analysis of the effects of Zhishi Rhubarb soup on ischaemic stroke

Springer Science and Business Media LLC - Tập 19 - Trang 1-11 - 2021
Jing-Hua Zhang1, Yue-Jia Shao1,2, Zhen Hui1, Su-Lei Wang1, Chi Huang1, Yang Zhao1
1Nanjing Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing City, People’s Republic of China
2Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China

Tóm tắt

Stroke has always been a major threat worldwide but is most severe in China, with 2.5 million new stroke cases each year and 7.5 million stroke survivors, placing a heavy burden on the social and national health care systems. Zhishi Rhubarb Soup (ZRS) is a traditional Chinese medicine (TCM) that has been used clinically for many years in China. To explore the potential mechanism of ZRS in the treatment of stroke, liquid chromatography with mass spectrometry (LC–MS) was performed. In this study, a quantitative proteomic method with LC–MS was used to analyse the proteomic differences between MACO samples treated with ZRS and those without ZRS treatment. Liquid chromatography with mass spectrometry (LC–MS) analysis led to the identification of 35,006 peptides, with 5160.0 proteins identified and 4094.0 quantified. Significantly differentially expressed proteins were identified through data analysis, and the difference was found to be more than 1.2 times (P < 0.05). The Gene Ontology (GO) analysis provided a summary of the dysregulated protein expression in the biological process (BP), cell component (CC), and molecular function (MF) categories. Proteins related to brain repair, including BDNF, IL-10, IL-6, and TGF-β, were found to change significantly, partially demonstrating the effectiveness of ZRS to attenuate tissue injury. In this study, LC–MS/MS was performed to assess the effects of ZRS on differentially expressed proteins in rats with cerebral infarction. These promising results could help to improve the understanding of the effects of drugs on stroke.

Tài liệu tham khảo

Wu X, Zhu B, Fu L, Wang H, Zhou B, Zou S, et al. Prevalence, incidence, and mortality of stroke in the Chinese Island populations: a systematic review. PLoS One. 2013;8(11):e78629. Li Z, Jiang Y, Li H, Xian Y, Wang Y. China’s response to the rising stroke burden. BMJ. 2019;364:l879. Waldman A, Tadi P, Rawal AR. Stroke Center Certification. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020;22(9). Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18. Lansberg Maarten G, Bluhmki E, Thijs VN. Efficacy and safety of tissue plasminogen activator 3 to 4.5 hours after acute ischemic stroke. Stroke. 2009;40(7):2438–41. Kisoh K, Hayashi H, Itoh T, Asada M, Arai M, Yuan B, et al. Involvement of GSK-3β phosphorylation through PI3-K/Akt in cerebral ischemia-induced neurogenesis in rats. Mol Neurobiol. 2017;54(10):7917–27. Kernie SG, Parent JM. Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis. 2010;37(2):267–74. Nakatomi H, Kuriu T, Okabe S, Yamamoto S-i, Hatano O, Kawahara N, et al. Regeneration of Hippocampal Pyramidal Neurons after Ischemic Brain Injury by Recruitment of Endogenous Neural Progenitors. Cell. 2002;110(4):429–41. Biebl M, Cooper CM, Winkler J, Kuhn HG. Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett. 2000;291(1):17–20. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435(4):406–17. Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA. Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol. 2003;460(4):563–72. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009;158(3):1021–9. Patel AR, Ritzel R, McCullough LD, Liu F. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5(2):73–90. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760–5. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100(23):13632–7. Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation. 2019;16(1):178. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development (Cambridge, England). 2003;130(2):391–9. Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. Int J Mol Sci. 2017;18(10):2135. De Bilbao F, Arsenijevic D, Moll T, Garcia-Gabay I, Vallet P, Langhans W, et al. In vivo over-expression of interleukin-10 increases resistance to focal brain ischemia in mice. J Neurochem. 2009;110(1):12–22. Jinghua Z, Zhen H, Wang S, Chi H, Yang Z. Effects of Jiajian Zhishi rhubarb soup on inflammatory factors and TXB2, 6-keto-PGF1α contents in MCAO model rats [J]. Lishizhen Med Materia Medica Res. 2021;32(01):21–3. Yang D, Lu J. Observation on the effect of anal drops of Jiawei Zhishi rhubarb soup in the treatment of 86 cases of paralytic intestinal obstruction after abdominal surgery [J]. New Chinese Med. 2004;09:28–9. Engel O, Kolodziej S, Dirnagl U, Prinz V. Modeling stroke in mice - middle cerebral artery occlusion with the filament model. J Vis Exp. 2011;47:2423. Brigadski T, Leßmann V. The physiology of regulated BDNF release. Cell Tissue Res. 2020;382(1):15–45. Hohn A, Leibrock J, Bailey K, Barde Y-A. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature. 1990;344(6264):339–41. Wang T, He C. TNF-α and IL-6: the link between immune and bone system. Curr Drug Targets. 2020;21(3):213–27. Waje-Andreassen U, Kråkenes J, Ulvestad E, Thomassen L, Myhr KM, Aarseth J, et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand. 2005;111(6):360–5. Wilcock DM. A changing perspective on the role of neuroinflammation in Alzheimer's disease. Int J Alzheimers Dis. 2012;2012:495243. Wang M, Yao M, Liu J, Takagi N, Yang B, Zhang M, et al. Ligusticum chuanxiong exerts neuroprotection by promoting adult neurogenesis and inhibiting inflammation in the hippocampus of ME cerebral ischemia rats. J Ethnopharmacol. 2020;249:112385. Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: from molecular mechanisms to therapeutic opportunities. Pharmacol Res. 2020;160:105163. Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2579–85. Siddiqui M, Manansala JS, Abdulrahman HA, Nasrallah GK, Smatti MK, Younes N, et al. Immune modulatory effects of vitamin D on viral infections. Nutrients. 2020;12(9):2879. Fiorino S, Gallo C, Zippi M, Sabbatani S, Manfredi R, Moretti R, et al. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res. 2020;32(10):2115–31. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins a and D take Centre stage. Nat Rev Immunol. 2008;8(9):685–98. Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2018;9:3160. Lemire JM, Adams JS, Sakai R, Jordan SC. 1 alpha,25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest. 1984;74(2):657–61. van der Vusse GJ. Albumin as fatty acid transporter. Drug Metab Pharmacokinetics. 2009;24(4):300–7. Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev. 2005;85(4):1343–72. Yamanashi Y, Takada T, Kurauchi R, Tanaka Y, Komine T, Suzuki H. Transporters for the intestinal absorption of cholesterol, vitamin E, and vitamin K. J Atheroscler Thromb. 2017;24(4):347–59. Bernhardt J, Hayward KS, Kwakkel G, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Int J Stroke. 2017;12(5):444–50. Allen LM, Hasso AN, Handwerker J, Farid H. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. RadioGraphics. 2012;32(5):1285–97.