The property of progesterone to mitigate cold stress in maize is linked to a modulation of the mitochondrial respiratory pathway

Theoretical and Experimental Plant Physiology - Tập 28 - Trang 385-393 - 2016
Serkan Erdal1, Mucip Genisel2
1Department of Biology, Science Faculty, Ataturk University, Erzurum, Turkey
2Organic Agriculture Program, Department of Crop and Animal Production, Vocational High School, Agri, Turkey

Tóm tắt

Progesterone is associated with growth and development in plants as well as tolerance against environmental stress. However, the molecular mechanisms responsible for the effects of progesterone are not completely understood. In this study, the effects of progesterone on the mitochondrial respiratory pathway (MRP) were investigated in maize seedlings treated with cold stress. Cold stress significantly activated cytochrome pathway (CP) by 61 % and especially alternative respiratory pathway (AP) by 239 % compared with the control, ultimately resulting in an increase by 72 % in the total cellular respiratory rate (TCR). Progesterone alone enhanced CP by 15 %, AP by 59 % and TCR by 15 % compared with control seedlings, whereas the highest values for these parameters were recorded in seedlings subjected to cold plus progesterone. Alternative oxidase (AOX) is the terminal oxidase in the AP. An increase in the AOX gene transcript level was observed in response to cold stress and progesterone, mirroring the increase in AP rate. Meanwhile, AOX protein accumulation exhibited a positive correlation with the AOX gene transcript level. In accordance with the high AP activity, progesterone-treated seedlings exhibited low levels of reactive oxygen species (ROS), including superoxide and hydrogen peroxide, and oxidative damage parameters, including electrolyte leakage and lipid peroxidation levels. Our data demonstrate that the mitigating role of progesterone against the effects of cold stress seems to be linked to the modulation of MRP.

Tài liệu tham khảo

Aydin S, Buyuk I, Aras ES (2014) Expression of SOD gene and evaluating its role in stress tolerance in NaCl and PEG stressed Lycopersicum esculentum. Turk J Bot 38(1):89–98. doi:10.3906/Bot-1305-1

Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1006/abio.1976.9999

Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol 176(2):375–389. doi:10.1111/j.1469-8137.2007.02183.x

Cvetkovska M, Vanlerberghe GC (2012) Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytol 195(1):32–39. doi:10.1111/j.1469-8137.2012.04166.x

Cvetkovska M, Vanlerberghe GC (2013) Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ 36(3):721–732. doi:10.1111/pce.12009

Dai QS, Shah AA, Garde RV, Yonish BA, Zhang L, Medvitz NA, Miller SE, Hansen EL, Dunn CN, Price TM (2013) A truncated progesterone receptor (PR-M) localizes to the mitochondrion and controls cellular respiration. Mol Endocrinol 27(5):741–753. doi:10.1210/Me.2012-1292

Erdal S (2012a) Alleviation of salt stress in wheat seedlings by mammalian sex hormones. J Sci Food Agric 92(7):1411–1416. doi:10.1002/Jsfa.4716

Erdal S (2012b) Androsterone-induced molecular and physiological changes in maize seedlings in response to chilling stress. Plant Physiol Biochem 57:1–7. doi:10.1016/j.plaphy.2012.04.016

Erdal S (2012c) Exogenous mammalian sex hormones mitigate inhibition in growth by enhancing antioxidant activity and synthesis reactions in germinating maize seeds under salt stress. J Sci Food Agric 92(4):839–843. doi:10.1002/Jsfa.4655

Erdal S, Genisel M, Turk H, Gorcek Z (2012) Effects of progesterone application on antioxidant enzyme activities and K +/Na + ratio in bean seeds exposed to salt stress. Toxicol Ind Health 28(10):942–946. doi:10.1177/0748233711430975

Gharari Z, Nejad RK, Band RS, Najafi F, Nabiuni M, Irian S (2014) The role of Mn-SOD and Fe-SOD genes in the response to low temperature in chs mutants of Arabidopsis. Turk J Bot 38(1):80–88. doi:10.3906/Bot-1210-12

Hanqing F, Kun S, Mingquan L, Hongyu L, Xin L, Yan L, Yifeng W (2010) The expression, function and regulation of mitochondrial alternative oxidase under biotic stresses. Mol Plant Pathol 11(3):429–440. doi:10.1111/j.1364-3703.2010.00615.x

Janeczko A, Oklestkova J, Novak O, Sniegowska-Swierk K, Snaczke Z, Pociecha E (2015) Disturbances in production of progesterone and their implications in plant studies. Steroids 96:153–163. doi:10.1016/j.steroids.2015.01.025

Karpova OV (2002) Differential expression of alternative oxidase genes in maize Mitochondrial Mutants. The Plant Cell Online 14(12):3271–3284. doi:10.1105/tpc.005603

Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227(5259):680. doi:10.1038/227680a0

Li CR, Liang DD, Xu RF, Li H, Zhang YP, Qin RY, Li L, Wei PC, Yang JB (2013) Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L. Genetics and Molecular Research 12(4):5424–5432. doi:10.4238/2013.November.11.4

Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl duringdevelopment of rice (Oriza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852. doi:10.1093/jxb/46.12.1843

Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96(14):8271–8276. doi:10.1073/pnas.96.14.8271

Mutlu S, Karadagoglu O, Atici O, Tasgin E, Nalbantoglu B (2013) Time-dependent effect of salicylic acid on alleviating cold damage in two barley cultivars differing in cold tolerance. Turk J Bot 37(2):343–349. doi:10.3906/Bot-1206-17

Ribas-Carbo M, Aroca R, Gonzalez-Meler MA, Irigoyen JJ, Sanchez-Diaz M (2000) The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity. Plant Physiol 122(1):199–204. doi:10.1104/Pp.122.1.199

Su XY, Wu S, Yang L, Xue RL, Li H, Wang YX, Zhao HJ (2014) Exogenous progesterone alleviates heat and high light stress-induced inactivation of photosystem II in wheat by enhancing antioxidant defense and D1 protein stability. Plant Growth Regul 74(3):311–318. doi:10.1007/s10725-014-9920-1

Sugie A, Naydenov N, Mizuno N, Nakamura C, Takumi S (2006) Overexpression of wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet Syst 81(5):349–354. doi:10.1266/Ggs.81.349

Turk H, Erdal S, Genisel M, Atici O, Demir Y, Yanmis D (2014) The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul 74(2):139–152. doi:10.1007/s10725-014-9905-0

Umbach AL, Lacey EP, Richter SJ (2009) Temperature-sensitive alternative oxidase protein content and its relationship to floral reflectance in natural Plantago lanceolata populations. New Phytol 181(3):662–671. doi:10.1111/j.1469-8137.2008.02683.x

Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14(4):6805–6847. doi:10.3390/Ijms14046805

Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants—protective role of exogenous polyamines. Plant Sci 151(1):59–66. doi:10.1016/S0168-9452(99)00197-1

Verma KK, Singh M, Gupta RK, Verma CL (2014) Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzymes, and growth responses of Jatropha curcas during soil flooding. Turk J Bot 38(1):130–140. doi:10.3906/Bot-1212-32

Wang J, Vanlerberghe GC (2013) A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Physiol Plant 149:461–473. doi:10.1111/ppl.12059

Wang H, Liang X, Huang J, Zhang D, Lu H, Liu Z, Bi Y (2010) Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses. Plant Cell Physiol 51(10):1754–1765. doi:10.1093/pcp/pcq134

Wang J, Rajakulendran N, Amirsadeghi S, Vanlerberghe GC (2011) Impact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperature. Physiol Plant 142(4):339–351. doi:10.1111/j.1399-3054.2011.01471.x

Yang XH, Xu ZH, Xue HW (2005) Arabidopsis Membrane Steroid Binding Protein 1 is involved in inhibition of cell elongation. Plant Cell 17(1):116–131. doi:10.1105/tpc.104.028381