The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barsanti L, Coltelli P, Evangelista V, Frassanito AM, Passarelli V, Vesentini N, Gualtieri P. Oddities and curiosities in the algal world. In: Evangelista V, Barsanti L, Frassanito AM, Passarelli V, Gualtieri P, editors. Algal toxins: nature, occurrence, effect and detection. Dordrecht: Springer; 2008. p. 353–91.
Das P, Aziz SS, Obbard JP. Two phase microalgae growth in the open system for enhanced lipid productivity. Renew Energy. 2011;36(9):2524–8.
Brennan L, Owende P. Biofuels from microalgae- a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14:557–77.
Plaza M, Herrero M, Cifuentes A, Ibanez E. Innovative natural functional ingredients from microalgae. J Argic Food Chem. 2009;57:7159–70.
Luiten EE, Akkerman I, Koulman A, Kamermans P, Reith H, Barbosa MJ, Sipkema D, Wijffels RH. Realizing the promises of marine biotechnology. Biomol Eng. 2003;20:429–39.
Michael A. Borowitzka high-value products from microalgae their development and commercialization. J Appl Phycol. 2013;25:743–56.
Pulz O, Gross G. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65(6):635–48.
Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol. 2010;85:199–203.
Ho SH, Chen WM, Chang G. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol. 2010;101(22):8725–30.
Paul Abishek M, Patel J, Prem Rajan A. Algae oil: a sustainable renewable fuel of future. Biotechnol Res Int. 2014;2014:272814. https://doi.org/10.1155/2014/272814 .
Gendy TS, El-Temtamy SA. Commercialization potential aspects of microalgae for biofuel production: an overview. Egypt J Pet. 2013;22:43–51.
Cerri CEP, You X, Cherubin MR, et al. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production. PLoS ONE. 2017;12(5):e0176948. https://doi.org/10.1371/journal.pone.0176948 .
Formighieri C, Franck F, Bassi R. Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture. J Biotechnol. 2012;162:115–23.
Melis A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 2009;177:272–80.
Medipally SR, Yusoff FM, Banerjee S, Shariff M. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int. 2015. https://doi.org/10.1155/2015/519513 .
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102:100–12.
Bchet Q, Munoz R, Shilton A, Guieysse B. Outdoor cultivation of temperature-tolerant Chlorella sorokiniana in a column photobioreactor under low power-input. Biotechnol Bioeng. 2013;110:118–26.
Park H, Lee C. Theoretical calculations on the feasibility of microalgal biofuels: utilization of marine resources could help realizing the potential of microalgae. Biotechnol J. 2016;11(11):1461–70. https://doi.org/10.1002/biot.201600041 .
Pandey A. Microalgae biomass production for CO2 mitigation and biodiesel production. J Microbiol Exp. 2017;4(4):00117. https://doi.org/10.15406/jmen.2017.04.00117 .
Paniagua-Michel J, Farfan BC, Buckle Ramirez LF. Culture of marine microalgae with natural biodigested resources. Aquaculture. 2011;64:249–56.
Singh A, Ohlsen SI. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy. 2011;88:3548–55.
Zamora Castro JE, Paniagua-Michel J, Lezama- Cervantes C. A novel approach for bioremediation of a coastal marine wastewater effluent based on artificial microbial mats. Mar Biotechnol. 2008;10:181–9.
Gavrilescu M, Chisti Y. Biotechnology a sustainable alternative for chemical industry. Biotechnol Adv. 2005;23:471–99.
Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. Biofuels from algae: challenges and potential. Biofuels. 2010;1(5):763–84.
Powell EE, Hill GA. Economic assessment of an integrated bioethanol-biodiesel-microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Des. 2009;87(9):1340–8.
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev. 2010;14(1):217–32.
Medipally SR, Fatimah M, Banerjee YS, Shariff M. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int. 2015. https://doi.org/10.1155/2015/519513 .
Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Ind Microbiol Biot. 2009;36:269–74.
Patil V, Tran KQ, Giselrød HR. Towards sustainable production of bio-fuels from microalgae. Int J Mol Sci. 2008;9:1188–95.
Balat M, Balat H, Oz C. Progress in bioethanol processing. Prog Energy Combust Sci. 2008;34(5):551–73.
Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008;99(13):5270–95.
Jegannathan KR, Chan ES, Ravindra P. Harnessing biofuels: a global Renaissance in energy production? Renew Sustain Energy Rev. 2009;13(8):2163–8.
Bothast RJ, Schlicher MA. Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol. 2005;67:19–25.
Basso LC, Basso TO, Rocha SN. Recent developments and prospects in biofuel production. In: Bernardes MA, editors. 2011. p. 85–100.
Licht FO. World ethanol markets: the outlook to 2015. Agra Europe Special Report: Tunbridge Wells; 2006.
Ueda R, Hirayama S, Sugata K, Nakayama H. Process for the production of ethanol from microalgae. US Patent 5,578,472; 1996.
Horn SJ, Aasen IM, Østgaard K. Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol. 2000;24:51–7.
Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF. An overview of the potential environmental impacts of large scale microalgae cultivation. Biofuels. 2014;5:331–49.
Mahlia TI, Razak HA, Nursahida MA. Life cycle cost analysis and payback period of lighting retrofit at the University of Malaya. J Renew Sustain Energy. 2011;15:1125–32.
Singh J, Gu S. Commercialization potential of microalgae for biofuels production. J Renew Sustain Energy. 2010;9(14):2596–610.
Gendy Tahani S, Seham A. El-temtamy commercialization potential aspects of microalgae for biofuel production: an overview. Egyptian J Pet. 2013;22:43–51.
Qari H, Rehan M, Nizami A-S. Key issues in microalgae biofuels: a short review. Energy Procedia. 2017;142:898–903.
Yusuf C, Yan G. Energy from algae: current status and future trends: algal biofuels—a status report. Appl Energy. 2011;88:3277–9.
Davis R, Kinchin C, Markham J, Tan ECD, Laurens LML. National Renewable Energy Laboratory. NREL Technical Report NREL/TP-5100-62368. 2014.
Duvall MN, Fraker RN. Algae-based biofuels attract incentives and investments. Washington, D.C.: Beveridge & Diamond, P.C.; 2009.
Ozkurt I. Qualifying of safflower and algae for energy. Energy Educ Sci Tech. 2009;23:145–51.
. Benemann J. Oswald W. Final report to the US Department of Energy. Grant No. DEFG22-93PC93204, Pittsburgh Energy Technology Center, USA; 1996.
Grobbelaar JU. Algal nutrition. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell; 2004. p. 97–115.
Adey WH, Luckett C, Smith M. Purification of industrially contaminated ground waters using controlled ecosystems. Ecol Eng. 1996;7(3):191–212.
Craggs RJ. Wastewater treatment by algal turf scrubbing. In: 7th international conference on wetland systems for water pollution control, Lake Buena Vista: I Wa Publishing; 2000.
Morales-Sánchez D, Martinez-Rodriguez OA, Martinez A. Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. J Chem Technol Biotechnol. 2017;92:925–36.
Park H, Jung D, Lee J, Kim P, Cho Y, Jung I, Kim Z-H, Lim S-M, Lee C-G. Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium. J Appl Phycol. 2018. https://doi.org/10.1007/s10811-018-1388-3 .
Novoveska L, Zapata AKM, Zabolotney JB, Atwood MC, Sundstrom ER. Optimizing microalgae cultivation and wastewater treatment in large-scale off shore photobioreactors. Algal Res. 2016;18:86–94.
Kim ZH, Park H, Lee CG. Seasonal assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactors. J Microbiol Biotechnol. 2016;26:1098–102.
US Department of energy multi-year program plan. 2014. http://www.energy.gov/sites/prod/files/2014/07/f17/mypp_july_2014.pdf .
Fuentes-Grunewald C, Garces E, Alacid E, Sampedro N, Rossi S, Camp J. Improvement of lipid production in the marine strains Heterosigma akashiwo and Alexandrium minutum utilizing abiotic parameters. J Ind Microbiol Biotechnol. 2012;39(1):207–16.
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev. 2010;14:217–32.
Krzemińska I, Pawlik-Skowrońska B, Trzcińska M, Tys J. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng. 2014;37(4):735–41. https://doi.org/10.1007/s00449-013-1044-x .
Huesemann MH, Van Wagenen J, Miller T, Chavis A, Hobbs S, Crowe B. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds Biotechnol. Bioeng. 2013;110:1583–94.
Alabi AO, Tampier M, Bibeau E. Microalgae technologies and processes for biofuels bioenergy production in british columbia. Current technology, suitability and barriers to implementation. Final report submitted to The British Columbia innovation council. Cambridge: Seed Science Press; 2009.
Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS ONE. 2012;7(6):e38975. https://doi.org/10.1371/journal.pone.0038975 .
Ye CP, Zhang MC, Yang YF, Thirumaran G. Photosynthetic performance in aquatic and terrestrial colonies of Nostoc flagelliforme (Cyanophyceae) under aquatic and aerial conditions. J Arid Environ. 2012;85:56–61.
Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–6.
Khoeyi Z, Seyfabadi J, Ramezanpour Z. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae. Berlin: Springer; 2011.
Jacob-Lopes E, Scoparo LMC, Lacerda F, Franco TT. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem Eng Process. 2009;48(1):306–10.
Carvalho AP. Light requirements in microalgal photobioreactors. Berlin: Springer; 2010.
Wu H. Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). Biomed Res Int. 2016;2016:7383918. https://doi.org/10.1155/2016/7383918 .
Khan MI, Lee MG, Seo HJ, Shin JH, Shin TS, Yoon YH, Kim MY, Choi JI, Kim JD. Enhancing the feasibility of Microcystis aeruginosa as a feedstock for bioethanol production under the influence of various factors. Biomed Res Int. 2016;2016:4540826.
Daliry S, Hallajisani A, Mohammadi Roshandeh J, Nouri H, Golzary A. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global J Environ Sci Manage. 2017;3(2):217–30.
Schuurmans RM, van Alphen P, Schuurmans JM, Matthijs HCP, Hellingwerf KJ. Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS ONE. 2015;10(9):e0139061. https://doi.org/10.1371/journal.pone.0139061 .
Kitaya Y, Azuma H, Kiyota M. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. Adv Space Res. 2005;35(9):1584–8.
Bechet Q, Laviale M, Arsapin N, Bonnefond H, Bernard O. Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnol Biofuels. 2017;10:136.
Singh SP, Singh P. Effect of temperature and light on the growth of algae species: a review. Renew Sust Energy Rev. 2015;50:431–44.
Covarrubias Y, Cantoral-Uriza EA, Casas-Flores JS, García-Meza JV. Thermophile mats of microalgae growing on the woody structure of a cooling tower of a thermoelectric power plant in Central Mexico. Revista Mexicana de Biodiversidad. 2016;87:277–87.
Hu Q, Zhang CW, Sommerfeld M. Biodiesel from algae: lessons learned over the past 60 years and future perspectives. In: Annual meeting of the phycological society of America (Juneau); 2006. p. 0–41 (abstract).
Lee CG, Seong DH, Yim SM, Bae JH. A novel Tetraselmis sp. and method for preparing biodiesel with this strain. Korean Patent. 2015. 10–1509562
Bechet Q, Shilton A, Fringer OB, Munoz R, Guieysse B. Mechanistic modeling of broth temperature in outdoor photobioreactors. Environ Sci Technol. 2010;44:2197–203.
Atkinson D, Ciotti BJ, Montagnes DJS. Protists decrease in size linearly with temperature: ca. 2.5% degrees C (− 1). Proc Biol Sci. 2003;270:2605–11.
Salvucci ME, Crafts-Brandner SJ. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol. 2004;134(4):1460–70.
Moller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF. Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence, or detoxification ability? Avian Poult Biol Rev. 2000;11:137–59.
Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process. 2009;48:1146–51.
Juneja A, Ceballos RM, Murthy GS. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies. 2013;6:4607–38. https://doi.org/10.3390/en6094607 .
Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 2006;28(1):64–70.
Gardner-Dale DA, Bradley IM, Guest JS. Influence of solids residence time and carbon storage on nitrogen and phosphorus recovery by microalgae across diel cycles. Water Res. 2017;121:231–9.
Bold HC, Wynne MJ. Introduction to the algae—structure and reproduction. Englewood Cliffs: Prentice-Hall Inc.; 1978. p. 706.
Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochem. 2006;67:696–701.
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–63.
Devi MP, Mohan SV. CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol. 2012;112:116–23.
Ito T, Tanaka M, Shinkawa H, Nakada T, Ano Y, Kurano N, Soga T, Tomita M. Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics. 2012. https://doi.org/10.1007/s11306-012-0463-z .
Zhu L, Li Z, Ketola T. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecol Eng. 2011;37:1460–6.
Show PL, Tang MSY, Nagarajan D, Ling TC, Ooi C-W, Chang J-S. A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci. 2017;18(1):215. https://doi.org/10.3390/ijms18010215 .
Zeng X, Danquah MK, Chen XD, Lu Y. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sustainable Energy Rev. 2011;15:3252–60.
Lam MK, Lee KT. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl Energy. 2012;94:303–8.
Dragone G, Fernandes B, Vicente A, Teixeira JA. Third generation biofuels from microalgae, current research, technology and education. Appl Microbiol Biotechnol. 2010;2:1355–66.
Ceron Garcia MC, Sanchez Miron A, Fernandez Sevilla JM, Molina Grima E, Garcia Camacho F. Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem. 2005;40(1):297–305.
Pienkos PT, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioref. 2009;3:431–40.
Ho SH, Chen CY, Chang JS. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalgae Scenedesmus obliquus CNW-N. Bioresour Technol. 2012;113:244–52.
Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson YH, Peltier G. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011;11(1):7.
Gimpel JA, Specht EA, Georgianna DR, Mayfield SP. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol. 2013;17:489–95.
Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM. Atsumi S synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev. 2013;113:4611–32.
Jonsson LJ, Martin C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–12.
Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101:4851–61.
Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol. 2007;108:67–93.
Rajarapu SP, Scharf ME. Saccharification of agricultural lignocellulose feedstocks and protein-level responses by a termite gut-microbe bioreactor. Front Energy Res. 2017;5:5.
Grima EM, Gonzalez MJI, Gimenez AG. Solvent extraction for microalgae lipids. In: Borowitzka MA, Moheimani NR, editors. Algae for biofuels and energy, vol 5. Netherlands: Springer; 2013. p. 187–205.
Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv. 2012;30:709–32.
Doan Q, Moheimani N, Mastrangelo A, Lewis D. Microalgal biomass for bioethanol fermentation: implications for hypersaline systems with an industrial focus. Biomass Bioenergy. 2012;46:79–88.
Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A. Chang JS Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 2013;135:191–8.
Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH. Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrogen Energy. 2011;36(21):13997–4003.
Park JH, Cheon HC, Yoon JJ, Park HD, Kim SH. Optimization of batch dilute-acid hydrolysis for biohydrogen production from red algal biomass. Int J Hydrogen Energy. 2013;38(14):6130–6.
Passos F, Hernandez-Marine M, Garcia J, Ferrer I. Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res. 2014;49:351–9.
Zhao G, Chen X, Wang L, Zhou S, Feng H, Chen WN, et al. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol. 2013;128:337–44.
Goettel M, Eing C, Gusbeth C, Straessner R, Frey W. Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res. 2013;2(4):401–8.
Sheng J, Vannela R, Rittmann BE. Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. Environ Sci Technol. 2011;45(8):3795–802.
Choi SP, Nguyen MT, Sim SJ. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol. 2010;101(14):5330–6.
Yanagisawa M, Nakamura K, Ariga O, Nakasaki K. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 2011;46(11):2111–6.
Chen CY, Bai MD, Chang JS. Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochem Eng J. 2013;81:170–6.
Cardona CA, Sanchez OJ. Fuel ethanol production: process design trends and integration opportunities. Biores Technol. 2007;98(12):2415–57.
Deesuth O, Laopaiboon P, Jaisil P, Laopaiboon P. Optimization of nitrogen and metal ions supplementation for very high gravity bioethanol fermentation from sweet sorghum juice using an orthogonal array design. Energies. 2012;5(9):3178–97.
Maruthai K, Thangavelu V, Kanagasabai M. Statistical screening of medium components on ethanol production from cashew apple juice using Saccharomyces Diasticus. Intl J Chem Biol Eng. 2012;6:108–11.
Nonklang BA, Abdel-Banat K, Cha-aim K, et al. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol. 2008;74(24):7514–21.
da Silva GP, de Araújo EF, Silva DO, Guimarães WV. Ethanolic fermentation of sucrose, sugarcane juice and molasses by Escherichia coli strain KO11 and Klebsiella oxytoca strain P2”. Braz J Microbiol. 2005;36(4):395–404.
Liu R, Shen F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresour Technol. 2008;99(4):847–54.
Lin Y, Zhang W, Li C, Sakakibara K, Tanaka K, Kong H. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy. 2012;47:395–401.
Kasemets K, Nisamedtinov I, Laht TM, Abner K, Paalme T. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study. Antonie Van Leeuwenhoek. 2007;92(1):109–28.
Louhichi B, Belgaib J, Benamor H, Hajji N. Production of bio-ethanol from three varieties of dates. Renew Energy. 2013;51:170–4.
Nadir N, Mel M, Karim MA, Yunus RM. Comparison of sweet sorghum and cassava for ethanol production by using Saccharomyces cerevisiae. J Appl Sci. 2009;9(17):3068–73.
Al Abdallah Q, Nixon BT, Fortwendel JR. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Front Energy Res. 2016. https://doi.org/10.3389/fenrg.2016.00036 .
Chng LM, Lee KT, Chan DJ. Evaluation on microalgae biomass for bioethanol production. Mater Sci Eng A. 2017;206:12–8.
Sivaramakrishnan R, Incharoensakdi A. Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel. 2018;217:458–66.
Khan MI, Lee MG, Shin JH, Kim JD. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Express. 2017;7:19.
Jensen GS, Ginsberg DI, Drapeau MS. Bluegreen algae as an immuno-enhancer and biomodulator. J Am Nutraceutical Assoc. 2001;3:24–30.
Borowitzka MA. Vitamins and fine chemicals from microalgae. In: Borowitzka MA, Borowitzka LJ, editors. Micro-algal biotechnology. Cambridge: Cambridge University Press; 1998. p. 153–96.
Becker W. Microalgae in human and animal nutrition. In: Richmond A, editor. Handbook of microalgal culture. Oxford: Blackwell; 2004. p. 312–51.
Borowitzka MA. Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol. 1995;7:3–15.
Cornet JF. Le technoscopeles photobioreacteurs. Biofutur. 1998;176:1–10.
Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–48.
Iwamoto H. Industrial production of microalgal cell-mass and secondary products major industrial species Chlorella. In: Richmond A, editor. Handbook of microalgal culture. Oxford: Blackwell; 2004. p. 255–63.
Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol. 2015;8:190–209.
Soletto D, Binaghi L, Lodi A, Carvalho JCM, Converti A. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture. 2005;243:217–24.
Guil-Guerrero JL, Navarro-Juarez R, Lopez-Martinez JC, Campra-Madrid P, Rebolloso-Fuentes MM. Functionnal properties of the biomass of three microalgal species. J Food Eng. 2004;65:511–7.
Duong VT, Ahmed F, Thomas-Hall SR, Quigley S, Nowak E, Schenk PM. High protein- and high lipid-producing microalgae from northern australia as potential feedstock for animal feed and biodiesel. Front Bioeng Biotechnol. 2015;3:53. https://doi.org/10.3389/fbioe.2015.00053 .
Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57:287–93.
Vijayavel K, Anbuselvam C, Balasubramanian MP. Antioxidant effect of the marine Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol Cell Biochem. 2007;303:39–44.
Adame-Vega C, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbiol Cell Fact. 2011;11:1–11.
Liang S, Xueming L, Chen F, Chen Z. Current microalgal health food R&D activities in China. Hydrobiologia. 2004;512:45–8.
Gonzalez LE, Diaz GC, Aranda DA, Cruz YR, Fortes MM. Biodiesel production based in microalgae: a biorefinery approach. Nat Sci. 2015;7:358–69.
Mulders KJM, Lamers PP, Martens DE, Wijffels RH. Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol. 2014;50:229–42.
Nobre BP, Villalobos F, Barragan BE, Oliveira AC, Batista AP, Marques PA, et al. A biorefinery from Nannochloropsis sp. microalga—extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol. 2013;135:128–36.
Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res. 2010;106:155–77.
Rastogi RP, Madamwar D, Incharoensakdi A. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front Microbiol. 2015;6:1254. https://doi.org/10.3389/fmicb.2015.01254 .
Boopathi T, Ki J-S. Impact of environmental factors on the regulation of cyanotoxin production. Toxins. 2014;6(7):1951–78. https://doi.org/10.3390/toxins6071951 .
Henriquez V, Escobar C, Galarza J, Gimpel J. Carotenoids in microalgae. In: Stange C, editor. Carotenoids in nature. Subcellular biochemistry, vol. 79. Cham: Springer; 2016.
Zhang D, Wan M, del Rio-Chanona EA, Huang J, Wang W, Li Y, Vassiliadis VS. Dynamic modelling of Haematococcus pluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors. Algal Res. 2016;13:69–78.
Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45(1):11–36.
Kumar D, Dhar DW, Pabbi S, Kumar N, Walia S. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Ind J Plant Physiol. 2014;19(2):184–8. https://doi.org/10.1007/s40502-014-0094-7 .
Datla P. The wonder molecule called phycocyanin. Chennai—India: Parry Nutraceuticals; 2011. http://www.valensa.com/images3/Phycocyanin_The%20Wonder%20Molecule.pdf . Accessed 5 July 2013.
Sathasivam R, Juntawong N. Modified medium for enhanced growth of Dunaliella strains. Int J Curr Sci. 2013;5:67–73.
Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF. Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci. 2017. https://doi.org/10.1016/j.sjbs.2017.11.003 .
Raposo MFJ, Mendes-Pinto MM, Morais R. Carotenoids, foodstuff and human health. In: Morais R, editor. Functional foods an introductory course. Porto: Universidade Católica Portuguesa—Escola Superior de Biotecnologia; 2001.
Chidambara-Murthy KN, Vanitha A, Rajesha J, Mahadeva-Swamy M, Sowmya PR, Ravishankar GA. In vivo antioxidant activity of carotenoids from Dunaliella salina—a green microalga. Life Sci. 2005;76:1382–90.
Lin J, Huang L, Yu J, Xiang S, Wang J, Zhang J, Yan X, Cui W, He S, Wang Q. Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro. Mar Drugs. 2016;14:67.
Cuvelier M-E. Antioxidants. In: Morais R, editor. Functional foods: an introductory course. Portugal: Escola Superior de Biotecnologia/UCP; 2001. p. 97–108.
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–26.
Uttara B, Singh AV, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74. https://doi.org/10.2174/157015909787602823 .
Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89–96.
Demming-Adams B, Adams WW. Antioxidants in photosynthesis and human nutrition. Science. 2002;298:2149–53.
Devaraj S, Jialal I. Vega-Lopez. Plant sterol-fortified orange juice effectively lowers cholesterol levels in mildly hypercholesterolemic healthy individuals. Arterioscler Thromb Vasc Biol. 2004;24:25–8.
Kim HJ, Fan X, Gabbi C, Yakimchuk K, Parini P, Warner M. Liver X receptor β (LXRβ): a link between β-sitosterol and amyotrophic lateral sclerosis—Parkinson’s dementia Proc. Natl Acad Sci USA. 2008;105(6):2094–9.
Fernandes P, Cabral JM. Phytosterols: applications and recovery methods. Bioresour Technol. 2007;98(12):2335–50.
Srigley CT, Haile EA. Quantification of plant sterols/stanols in foods and dietary supplements containing added phytosterols. J Food Compos Anal. 2015;40:163–76. https://doi.org/10.1016/j.jfca.2015.01.008 .
Luo X, Su P, Zhang W. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar Drugs. 2015;13(7):4231–54. https://doi.org/10.3390/md13074231 .
Volkman JK. A review of sterol markers for marine and terrigenous organic matter. Org Geochem. 1996;9:83–99.
Santhosh S, Dhandapani R, Hemalatha R. Bioactive compounds from Microalgae and its different applications—a review. Adv Appl Sci Res. 2016;7(4):153–8.
Volkman JK. Sterols in microalgae. In: Borowitzka M, Beardall J, Raven J, editors. The physiology of microalgae. Developments in applied phycology, vol. 6. Cham: Springer; 2016.
Ahmed F, Zhou W, Schenk PM. Pavlova lutheri is a high-level producer of phytosterols. Algal Res. 2015;10:210–7.
. Zhang Y. Sterols in Microalgae: Euglena gracilis and Selenastrum sp. master’s thesis University of Helsinki, Faculty of Agriculture and Forestry, Department of Food and Environmental Sciences.
Leblond JD, Timofte HI, Roche SA, Porter NM. Sterols of glaucocystophytes. Phycol Res. 2011;59:129–34.
Thomson PG, Wright SW, Bolch CJS, Nichols PD, Skerratt JH, McMinn A. Antarctic distribution, pigment and lipid composition, and molecular identification of the brine dinoflagellate Polarella glacialis (Dinophyceae). J Phycol. 2004;40:867–73.
Giner JL, Zhao H, Boyer GL, Satchwell MF, Andersen RA. Sterol chemotaxonomy of marine pelagophyte algae. Chem Biodiv. 2009;6(7):1111–30.
Gouveia L, Batista AP, Sousa I, Raymundo A, Bandarra N. Microalgae in novel food products. In: Konstantinos N, Papadopoulos PP, editors. food chemistry research development. New York: Nova Science Publishers; 2008. p. 75–112.
Bleakley Stephen, Proteins Maria Hayes Algal. Extraction, application, and challenges concerning production. Foods. 2017;6:33. https://doi.org/10.3390/foods6050033 .
Smee DF, Bailey KW, Wong MH, et al. Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antivir Res. 2008;80(3):266–71.
Arya V, Gupta VK. A review on marine immunomodulators. Int J PharmLife Sci. 2001;2(5):751–8.
Zappe H, Snell ME, Bossard MJ. PEGylation of cyanovirin-N, an entry inhibitor of HIV. Adv Drug Deliv Rev. 2008;60(1):79–87.
Bannenberg G, Mallon C, Edwards H, Yeadon D, Yan K, Johnson H, Ismail A. Omega-3 long-chain polyunsaturated fatty acid content and oxidation state of fish oil supplements in New Zealand. Scientific Reports. 2017;7:1488.
Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 2002;287:1815–21.
. Guedes ACA. Production, extraction and characterization of selected metabolites from microalgae and cyanobacteria. Ph.D. Thesis Porto,: Escola Superior de Biotecnologia, Universidade Católica Portuguesa; 2010.
Sarrobert B, Dermoun D. Extraction et valorisation de molecules à haute valeur ajoutée chez la microalgae Porphyridium cruentum. Premier Colloque Scientifique Français sur la Biotechnologie des Microalgues et des Cyanobacteries Appliquée au Thermalisme, vol. 24. France: Centre d’Études Nucléaires de Cadarache; 2008. p. 109–14.
Armenta RE, Valentine MC. Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. J Am Oil Chem Soc. 2013;90:167–82.
Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for omega-3 fatty acid production. Curr Opin Biotechnol. 2014;26:14–8.
Hamilton M, Haslam R, Napier J, Sayanova O. Metabolic engineering of microalgae for enhanced production of omega-3 long chain polyunsaturated fatty acids. Metab Eng. 2014;22:3–9.
Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ. Food commodities from microalgae. Curr Opin Biotechnol. 2013;24:169–77.
Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014;6:52–63.
Chauton MS, Kjell IR, Niels HN, Ragnar T, Hans TK. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture. 2015;436:95–103.
Hamilton ML, Powers S, Napier JA, Sayanova O. Heterotrophic production of omega-3 long-chain Polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs. 2016;14:53.
Wen Z-Y, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv. 2003;21:273–94.
Yongmanitchai W, Ward O. Growth and omega-3 fatty acid production by the Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol. 1991;57:419–25.
Gardner RD, Cooksey KE, Mus F, Macur R, Moll K, Eustance E, et al. Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol. 2012;24(5):1311–20.
Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM, et al. Physiological and molecular analysis of carbon source supplementation and pH stress- induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Appl Microbiol Biotechnol. 2013;97:3625–42.
Hosseini Tafreshi A, Shariati M. Dunaliella biotechnology: methods and applications. J Appl Microbiol. 2009;107(1):14–35.
Jungblut AD, Neilan BA. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch Microbiol. 2006;185:107–14.
Ahmed WA, El-Semary NA, Abd El-Hameed OM, El Tawill G, Ibrahim DM. Bioactivity and cytotoxic effect of cyanobacterial toxin against hepatocellular carcinoma. J Cancer Sci Ther. 2017;9:505–11.
Vijayakumar S, Menakha M. Pharmaceutical applications of cyanobacteria—a review. J Acute Med. 2015;5:15–23.
Blaha L, Pavel B, Blahoskav M. Toxins produced in cyanobacterial water blooms—toxicity and risks. Interdiscip Toxicol. 2009;2:36–41.
Ferrao-Filho AS, Kozlowsky-Suzuki B. Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar Drugs. 2011;12:2729–72.
Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria—a prolific source of natural products. Tetrahedron. 2001;57(46):9347–77.
Volk R-B, Furkert FH. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res. 2006;161:180–6.
Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents (review). Lancet Infect Dis. 2003;3:338–48.
Washida K, Koyama T, Yamada K, Kitab M, Urmura D, et al. Karatungiols A and B two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 2006;47(15):2521–5.
Ngo DN, Kim MM, Kim SK. Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr Polym. 2006;74:228–34.
Je JY, Park PJ, Kim SK. Antioxidant activity of a peptide isolated from Alaska pollock (Theragra chalcogramma) frame protein hydrolysate. Food Res Int. 2005;38:45–50.
Pena-Ramos E, Xiong Y. Antioxidative activity of whey protein hydrolysates in a liposomal system. J Dairy Sci. 2001;84:2577–83.
Cornish M, Garbary D. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae. 2010;25:155–71.
Le Tutour B, Benslimane F, Gouleau MP, Gouygou JP, Saadan B, Quemeneur F. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J Appl Phycol. 1998;10(2):121.
Cho M, Lee H, Kang I, Won M, You S. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem. 2011;127:999–1006.
Sachindra N, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Agric Food Chem. 2007;55:8516–22.
Ravi Kumar S, Narayan B, Vallikannan B. Fucoxanthin restrains oxidative stress induced by retinol deficiency through modulation of Na + Ka + -ATPase and antioxidant enzyme activities in rats. Eur J Nutr. 2008;47:432–41.
Sangeetha R, Bhaskar N, Baskaran V. Comparative effects of b-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Mol Cell Biochem. 2009;331:59–67.
Heo S, Ko S, Kang S, Kang H, Kim J, Kim S, et al. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. Eur Food Res Technol A. 2008;228:145–51.
Sekar S, Chandramohan M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol. 2008;20:113–36.
Yabuta Y, Fujimura H, Kwak CS, Enomoto T, Wata-nabe F. Antioxidant activity of the phycoeryth-robilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res. 2010;16:347–51.
Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. Angiogenesis and oxidative stress: common mechanisms linking psoriasis with atherhosclerosis. J Dermatol Sci. 2011;63:1–9.
Cherrington JM, Strawn LM, Shawver LK. New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv Cancer Res. 2000;79:1–38.
JrR Roskoski. Vascular endothelial growth factor (VEGF) signaling in tumour progression. Crit Rev Oncol Hematol. 2007;62:179–213.
Emanueli C, Salis MB, Stacca T, Pinna A, Gaspa L, Madeddu P. Angiotensin AT (1) receptor signaling modulates reparative angiogenesis induced by limb ischemia. Br J Pharmacol. 2002;135:87–92.
Sugawara T, Matsubara K, Akagi R, Mori M, Hirata T. Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. Agric Food Chem. 2006;54:9805–10.
Ganesan P, Matsubara K, Ohkubo T, Tanaka Y, Noda K, Sugawara T, Hirata T. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. Phytomedicine. 2010;17:1140–4.
Tsukui T, Baba N, Hosokawa M, Sashima T, Miyashit K. Enhancement of hepatic docosahexaenoic acid and arachidonic acid contents in C57BL/6J mice by dietary fucoxanthin. Fish Sci. 2009;75:261–3.
Shimoda H, Tanaka J, Shan S, Maoka T. Antipigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J Pharm Pharmacol. 2010;62:1137–45.
Heo SJ, Jeon YJ. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B. 2009;95:101–7.
Pen S, Scarone L, Manta E, Stewart L, Yardley V, et al. Synthesis of a Microcystis aeruginosa predicted metabolite with antimalarial activity. Bioorg Med Chem Lett. 2012;22(15):4994–7.
Russo P, Cesario A. New anticancer drugs from marine cyanobacteria. Curr Drug Targets. 2012;13(8):1048–53.
Martins RF, Ramos MF, Herfindal L, Sousa JA, Skaerven K, Vasconcelos VM. Antimicrobial and cytotoxic assessment of marine cyanobacteria-Synechocystis and Synechococcus. Mar Drugs. 2008;6(1):1–11.
Sivonen K, Leikoski N, Fewer DP, Jokela J. Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria. App Microbiol Biotechnol. 2010;86(5):1213–25.
Yonezawa T, Mase N, Sasaki H, Teruya T, Hasegawa S, Cha BY, Yagasaki K, Suenaga K, Nagai K, Woo JT. Biselyngbyaside, isolated from marine cyanobacteria, inhibits osteoclastogenesis and induces apoptosis in mature osteoclasts. J Cell Biochem. 2012;113:440–8.
Oftedal L, Selheim F, Wahlsten M, Sivonen K, Doskeland SO, Herfindal L. Marine benthic cyanobacteria contain apoptosis-inducing activity synergizing with daunorubicin to kill leukemia cells, but not cardiomyocytes. Mar Drugs. 2010;8:2659–72.
Singh RK, Tiwari SP, Rai AK, Mohapatra TM. Cyanobacteria: an emerging source for drug discovery. J Antibiot. 2011;64:401–12.
Nair S, Bhimba BV. Bioactive potency of cyanobacteria Oscillatoria spp. Int J Pharm Pharm Sci. 2013;5:611–2.
Welker M, von Döhren H. Cyanobacterial peptides-nature’s own combinatorial biosynthesis. FEMS Microbiol Rev. 2006;30:530–63.
Kong CS, Kim JA, Kim SK. Anti-obesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes. Food Chem Toxicol. 2009;47(10):2401–6.
Wang H, Peiris TH, Mowery A, Le Lay J, Gao Y, Greenbaum LE. CCAAT/enhancer binding protein-beta is a transcriptional regulator of peroxisome-proliferator-activated receptor-gamma coactivator-1alpha in the regenerating liver. Mol Endocrinol. 2008;22:1596–605.
Hayato M, Masashi H, Tokutake S, Nobuyuk T, Teruo K, Kazuo M. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. Int J Mol Med. 2006;18:147–52.
Okada T, Nakai M, Maeda H, Hosokawa M, Sashima T, Miyashita K. Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. J Oleo Sci. 2008;57(6):345–51.
Maeda H, Hosokawa M, Sashima T, Miyashita K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Agric Food Chem. 2007;55:7701–6.
Miyashita K. Anti-obesity therapy by food component: unique activity of marine carotenoid, fucoxanthin. Obes Control Ther. 2014;1(1):4. https://doi.org/10.15226/2374-8354/1/1/00103 .
Abidov M, Ramazanov Z, Seifulla R, Grachev S. The effects of Xanthigen™ in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab. 2010;12:72–81.
Kim SM, Jung YH, Kwon O, Cha KH, Um BH. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol. 2012;166:1843–55.
Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci. 2007;56(12):615–21.
Khalid MN, Shameel M, Ahmad VU, Shahzad S, Leghari SM. Studies on the bioactivity and phycochemistry of Microcystis aeruginosa (Cyanophycota) from Sindh. Pak J Bot. 2010;42:2635–46.
Mendiola JA, Santoyo S, Cifuentes A, Reglero G, Ibanez E, Senorans FJ. Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina. J Food Prot. 2008;71:2138–43.