The potential of translational bioinformatics approaches for pharmacology research

British Journal of Clinical Pharmacology - Tập 80 Số 4 - Trang 862-867 - 2015
Lang Li1,2,3
1Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
2Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
3Indiana Institute of Personalized Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

Tóm tắt

The field of bioinformatics has allowed the interpretation of massive amounts of biological data, ushering in the era of ‘omics’ to biomedical research. Its potential impact on pharmacology research is enormous and it has shown some emerging successes. A full realization of this potential, however, requires standardized data annotation for large health record databases and molecular data resources. Improved standardization will further stimulate the development of system pharmacology models, using translational bioinformatics methods. This new translational bioinformatics paradigm is highly complementary to current pharmacological research fields, such as personalized medicine, pharmacoepidemiology and drug discovery. In this review, I illustrate the application of transformational bioinformatics to research in numerous pharmacology subdisciplines.

Từ khóa


Tài liệu tham khảo

10.1038/ng.2825

10.1038/nature13438

10.1038/nrg2841

10.1038/nrg3542

10.1002/sim.5620

10.1038/clpt.2012.203

10.1038/clpt.2012.49

10.1038/clpt.2012.50

Available athttp://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/(last accessed 30 September 2014).

Available athttp://www.drugbank.ca(last accessed 30 September 2014).

Available athttp://www.pubmed.org(last accessed 30 September 2014).

Available athttp://www.pharmgkb.org(last accessed 30 September 2014).

Available athttp://www.lincscloud.org(last accessed 30 September 2014).

10.7326/0003-4819-153-9-201011020-00010

10.1038/clpt.2012.41

10.1186/2041-1480-5-29

10.1186/1471-2105-14-35

10.1136/amiajnl-2011-000523

10.1371/journal.pcbi.1002614

10.1136/amiajnl-2011-000214

Harpaz R, 2010, Statistical Mining of Potential Drug Interaction Adverse Effects in FDA's Spontaneous Reporting System, AMIA Annu Symp Proc, 2010, 281

Xiang Y, 2014, Efficiently mining Adverse Event Reporting System for multiple drug interactions, AMIA Summit on Translational Science Proceeding, 120

10.1197/jamia.M3028

10.1136/amiajnl-2011-000208

10.1186/1471-2105-10-S2-S6

Percha B, 2012, Discovery and explanation of drug‐drug interactions via text mining, Pac Symp Biocomput, 410

Available athttp://www.mavir.net/conf/137‐ddiextraction2013(last accessed 30 September 2014).

10.1038/gim.2013.72

10.1016/j.ajhg.2010.03.003

10.1038/nbt.2749

10.1038/clpt.2011.81

10.1111/bcp.12353

10.1039/c3mb70503j

10.1016/j.pharmthera.2013.01.016

10.1038/nature11691

10.1038/msb.2008.27

10.1155/2014/495840

10.1093/bioinformatics/btr584

10.1089/cmb.2011.0264

10.1038/clpt.2014.51

10.1016/j.jbi.2011.07.005

10.1002/pds.3365

10.1136/amiajnl-2012-001482

10.1038/clpt.2014.115

10.1200/JCO.2005.03.3266