The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk
Tóm tắt
Từ khóa
Tài liệu tham khảo
C. Domb,Adv. Chem. Phys. 15:229 (1969).
S. G. Whittington,Adv. Chem. Phys. 51:1 (1982).
R. Fern�ndez, J. Fr�hlich, and A. D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Lecture Notes in Physics, Springer-Verlag, to appear).
F. T. Wall, S. Windwer, and P. J. Gans, inMethods in Computational Physics, Vol. 1, B. Alder, S. Fernbach, and M. Rotenberg, eds. (Academic Press, New York, 1963).
B. Berg and D. Foerster,Phys. Lett. 106B:323 (1981); C. Arag�o de Carvalho and S. Caracciolo,J. Phys. (Paris) 44:323 (1983); C. Arag�o de Carvalho, S. Caracciolo, and J. Fr�hlich,Nucl. Phys. B 215[FS7]:209 (1983).
D. L. Hunter, N. Jan, and B. MacDonald,J. Phys. A 19:L543 (1986); K. Kelly, D. L. Hunter and N. Jan,J. Phys. A 20:5029 (1987).
J. G. Kemeny and J. L. Snell,Finite Markov Chains (Springer, New York, 1976).
M. Iosifescu,Finite Markov Processes and Their Applications (Wiley, Chichester, 1980).
K. L. Chung,Markov Chains with Stationary Transition Probabilities, 2nd ed. (Springer, New York, 1967).
M. Hamermesh,Group Theory and Its Application to Physical Problems (Addison-Wesley, Reading, Massachusetts, 1962), Chapter 2.
D. E. Knuth,The Art of Computer Programming, Vol. 3 (Addison-Wesley, Reading, Massachusetts, 1973), Section 6.4.
E. Horowitz and S. Sahni,Fundamentals of Data Structures (Computer Science Press, Potomac, Maryland, 1976), Section 9.3.
N. Madras and A. D. Sokal, in preparation.
D. Goldsman, Ph. D. thesis, School of Operations Research and Industrial Engineering, Cornell University (1984).
D. Aldous, inS�minaire de Probabilit�s XVII (Lecture Notes in Mathematics No. 986, Springer-Verlag, Berlin, 1983).
W. Feller,An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed. (Wiley, New York, 1968), pp. 224?225.
D. E. Knuth,The Art of Computer Programming, Vol. 2, 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1973), pp. 102?103.
S. D. Silvey,Statistical Inference (Chapman and Hall, London, 1975), Chapter 3.
I. Majid, Z. V. Djordjevic, and H. E. Stanley,Phys. Rev. Lett. 51:1433 (1983).
A. K. Kron,Vysokomol. Soyed. 7:1228 (1965) [Polymer Sci. USSR 7:1361 (1965)].
A. K. Kronet al., Molek. Biol. 1:576 (1967) [Molec. Biol. 1:487 (1967)].
E. Br�zin, J.-C. LeGuillou, and J. Zinn-Justin, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, London, 1976).
R. M. Karp and M. Luby, in24th Annual Symposium on Foundations of Computer Science (IEEE, New York, 1983), pp. 56?64.
R. M. Karp, M. Luby, and N. Madras, Monte-Carlo Approximation Algorithms for Enumeration Problems, submitted toJ. Algorithms.
A. D. Sokal and L. E. Thomas, in preparation.
S. Caracciolo, U. Glaus, and A. D. Sokal, in preparation.
D. S. Gaunt and A. J. Guttmann, inPhase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, London, 1974).
A. J. Guttmann, in preparation, to appear inPhase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York).
M. B. Priestley,Spectral Analysis and Time Series (Academic Press, London, 1981).
T. W. Anderson,The Statistical Analysis of Time Series (Wiley, New York, 1971).