The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis‐resistance to non‐thermal plasma therapy

Pathology International - Tập 66 Số 5 - Trang 245-259 - 2016
Shinya Toyokuni1,2
1Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
2Sydney Medical School, The University of Sydney, NSW, Australia

Tóm tắt

Helmut Sies established the concept of oxidative stress in 1985. However, it took some time to introduce this concept into pathology, where investigators count on formalin‐fixed paraffin‐embedded tissue sections. I sought out antigens for this purpose based on an oxidative stress‐induced rat renal carcinogenesis model, which revealed that 8‐hydroxy‐2′‐deoxyguanosine and 4‐hydroxy‐2‐nonenal‐modified proteins are ideal. These two monoclonal antibodies successfully revealed the involvement of oxidative stress in numerous human diseases, including carcinogenesis and atherosclerosis. Shigeru Okada established the aforementioned ferric nitrilotriacetate (Fe‐NTA)‐induced rat renal carcinogenesis model, which thus far has answered many questions regarding the presence of target genes in oxidative stress‐induced carcinogenesis and the sites that are susceptible to oxidative stress in the genome. Particularly, the similarity of genomic alterations between Fe‐NTA‐induced renal cancer and human cancers suggests that excess iron plays a role also in human carcinogenesis. Furthermore, excess iron is a major pathology in asbestos‐induced mesothelioma, including chrysotile. Despite an analogy to asbestos, multi‐wall carbon nanotubes were distinct in that diameter is another responsible factor for mesothelial carcinogenesis. Recently, non‐thermal plasma emerged as a candidate for medical intervention for wounds and cancers via manipulating oxidative stress. Counteracting excess iron is a promising preventive strategy for major diseases.

Từ khóa


Tài liệu tham khảo

10.1038/384055a0

10.1038/nature13068

10.1016/0016-7037(93)90566-F

10.1073/pnas.061514798

10.1016/0040-1625(79)90076-3

Halliwell B, 2007, Free Radicals in Biology and Medicine

10.1667/RR2629.1

10.1093/geronj/11.3.298

10.1016/S0021-9258(18)63504-5

10.1016/B978-0-12-642760-8.50008-9

10.1016/j.redox.2015.01.002

10.1016/0065-2571(85)90049-4

10.1016/0891-5849(94)00198-S

10.1074/jbc.R113.544635

10.1016/0891-5849(95)02111-6

10.1179/135100002125000596

10.1007/978-1-4615-9462-8_8

10.1080/09553009214550791

10.1016/j.freeradbiomed.2014.10.578

10.1016/0003-9861(89)90467-0

10.1046/j.1440-1827.1999.00829.x

10.1016/0003-9861(92)90431-U

10.1073/pnas.89.10.4544

10.1016/0076-6879(94)34072-2

10.1111/j.1440-1827.2007.02127.x

10.1039/c2sc21649c

10.3109/10715762.2014.898844

10.1039/CT8946500899

10.1006/bbrc.1998.9864

10.1016/0014-5793(73)80755-0

10.1016/j.freeradbiomed.2005.02.026

10.1016/j.freeradbiomed.2012.05.020

10.1146/annurev.pharmtox.44.101802.121735

10.1073/pnas.0404762101

10.1126/science.1080273

10.1039/b406180b

10.1016/j.freeradbiomed.2013.07.036

10.1080/10715769900300881

10.1101/gad.13.1.76

10.1016/j.tips.2013.04.005

10.1158/0008-5472.CAN-07-5003

10.1038/nrc3278

10.1016/S0021-9258(18)43849-5

10.1111/j.1440-1827.2004.01620.x

Atherton NM, 1994, Electron spin resonance: A review of recent literature to 1993

10.1080/10715760100300781

Bates GW, 1971, The kinetics and mechanism of iron (III) exchange between chelates and transferrin IV. The reaction of transferrin with iron (III) nitrilotriacetate, J Biol Chem, 246, 3679, 10.1016/S0021-9258(18)62181-7

Awai M, 1979, Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate: a model of experimental hemochromatosis, Am J Pathol, 95, 663

Okada S, 1982, Induction of rat renal adenocarcinoma by Fe‐nitrilotriacetate (Fe‐NTA), Jpn Arch Intern Med, 29, 485

Ebina Y, 1986, Nephrotoxicity and renal cell carcinoma after use of iron‐ and aluminum‐ nitrilotriacetate complexes in rats, J Natl Cancer Inst, 76, 107

Li JL, 1987, Subacute nephrotoxicity and induction of renal cell carcinoma in mice treated with ferric nitrilotriacetate, Cancer Res, 47, 1867

10.1016/0041-008X(85)90326-6

Hamazaki S, 1986, Nephrotoxicity of ferric nitrilotriacetate: an electron‐microscopic and metabolic study, Am J Pathol, 123, 343

10.1016/0005-2760(87)90241-4

Pompella A, 1987, Histochemical detection of lipid peroxidation in the liver of bromobenzene‐poisoned mice, Am J Pathol, 129, 295

10.1016/0005-2760(88)90076-8

Toyokuni S, 1990, Combined histochemical and biochemical analysis of sex hormone dependence of ferric nitrilotriacetate‐induced renal lipid peroxidation in ddY mice, Cancer Res, 50, 5574

Okada S, 1991, Sex differences in the localization and severity of ferric nitrilotriacetate‐induced lipid peroxidation in the mouse kidney, Acta Pathol Jpn, 41, 221

10.1111/j.1440-1827.1996.tb03617.x

10.1126/science.1355616

10.1111/j.1749-6632.2000.tb06187.x

10.1002/ijc.2910570122

10.1002/ijc.2910620313

10.1016/S0891-5849(96)00489-3

10.1073/pnas.91.7.2616

Toyokuni S, 1997, Quantitative immunohistochemical determination of 8‐hydroxy‐2′‐deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate‐induced renal carcinogenesis model, Lab Invest, 76, 365

10.1016/0014-5793(95)00033-6

10.2337/diabetes.48.4.927

10.1111/1523-1747.ep12365625

10.1111/j.1440-1827.2006.02043.x

10.1046/j.1523-1747.1999.00630.x

10.1038/41343

10.1111/j.1349-7006.2008.01001.x

Vogelstein B, 1998, The Genetic Basis of Human Cancer

10.1111/j.1349-7006.1995.tb03308.x

10.1038/sj.onc.1202707

10.1006/abbi.1996.0410

10.1006/abio.1999.4073

10.1074/jbc.274.34.23787

10.1074/jbc.M309057200

10.1074/jbc.M210129200

10.1016/j.jchromb.2005.02.025

10.1021/tx800080x

10.1006/abbi.1993.1125

10.1016/0162-0134(92)84069-Y

10.1093/carcin/14.2.223

10.1371/journal.pone.0043403

10.2353/ajpath.2007.070741

10.1111/j.1469-1809.1991.tb00394.x

10.3164/jcbn.11-001FR

10.3164/jcbn.39.3

10.1002/iub.61

Aruoma OI, 1998, DNA and Free radicals: Techniques, Mechanisms and Applications

10.1016/0891-5849(95)02184-1

10.3164/jcbn.10-38R

10.2353/ajpath.2006.051280

10.1038/35066075

10.1073/pnas.072618599

10.1093/dnares/dsu023

10.1016/j.cell.2012.03.042

10.1016/0005-2760(82)90150-3

10.1016/j.cell.2013.12.010

10.1016/S0891-5849(02)01197-8

10.1038/ncb3064

10.1002/ijc.2910580613

10.1016/0014-5793(94)01368-B

10.1002/(SICI)1097-0215(19960208)65:4<437::AID-IJC7>3.0.CO;2-Y

10.3109/10715762.2011.564170

10.1007/b97620

IARC, 2012, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 219

10.1038/468868a

79 Kubota workers killed by asbestos over 26 years (2005.06.30).The Daily Yomiuri.2005.

10.1038/srep01144

10.1038/labinvest.2015.28

10.1056/NEJMra050152

10.1002/ajim.22206

10.1002/path.4075

10.1093/carcin/bgt267

Cheng JQ, 1994, p16 alterations and deletion mapping of 9p21‐p22 in malignant mesothelioma, Cancer Res, 54, 5547

Xio S, 1995, Codeletion of p15 and p16 in primary malignant mesothelioma, Oncogene, 11, 511

10.1111/j.1349-7006.2008.00934.x

10.1111/j.1349-7006.2011.02087.x

Kubo Y, 2012, Distinct affinity of nuclear proteins to the surface of chrysotile and crocidolite, J Clin Biochem Nutr, 51, 221

Toyokuni S, 2009, Mechanisms of asbestos‐induced carcinogenesis, Nagoya J Med Sci, 71, 1

10.1158/1940-6207.CAPR-13-0244

10.1002/path.4377

10.1016/j.freeradbiomed.2015.05.002

10.1038/354056a0

Endo M, 2008, Carbon Nanotubes, 13

10.1166/jnn.2011.3761

10.1038/nnano.2008.111

10.1073/pnas.1110013108

10.1016/S1470-2045(14)71109-X

10.2131/jts.33.105

10.1111/j.1349-7006.2012.02318.x

10.2131/jts.34.65

10.1111/pin.12093

10.1016/j.addr.2013.05.011

Toyokuni S, 2015, Minimal inflammogenicity of pristine single‐wall carbon nanotubes, Nagoya J Med Sci, 77, 195

10.1111/cas.12865

10.3164/jcbn.14-92

10.1002/ppap.200700154

10.1371/journal.pone.0016270

10.1063/1.4933402

10.3164/jcbn.14-40

10.1111/j.1365-2133.2010.09744.x

10.1063/1.3694928

10.1371/journal.pone.0081576

10.1038/srep07705

10.1615/PlasmaMed.2012006275