The organization of the human cerebral cortex estimated by intrinsic functional connectivity

Journal of Neurophysiology - Tập 106 Số 3 - Trang 1125-1165 - 2011
B.T. Thomas Yeo1,2, Fenna M. Krienen1,2, Jorge Sepulcre1,2,3, Mert R. Sabuncu1,4, Danial Lashkari4, Marisa O. Hollinshead1,2,3, Joshua L. Roffman5, Jordan W. Smoller6,5, Lilla Zöllei1, Jonathan R. Polimeni1, Bruce Fischl1,4,7, Hesheng Liu1, Randy L. Buckner1,5,2,3
1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown
2Harvard University Department of Psychology, Center for Brain Science, Cambridge;
3Howard Hughes Medical Institute, Cambridge;
4Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge
5Department of Psychiatry, Massachusetts General Hospital, Boston
6Center for Human Genetics Research, Massachusetts General Hospital, Boston; and
7Massachusetts Institute of Technology-Harvard Division of Health Sciences and Technology, Cambridge, Massachusetts

Tóm tắt

Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.

Từ khóa


Tài liệu tham khảo

10.1038/nature09182

10.1152/jn.00102.2009

10.1371/journal.pbio.1000489

10.1006/nimg.1999.0516

10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7

10.1002/cne.902960106

10.1146/annurev.neuro.25.112701.142922

10.1016/j.neuron.2010.02.005

10.1523/JNEUROSCI.11-01-00168.1991

10.1016/S0893-6080(02)00094-1

10.1002/cne.902560203

10.1006/jmrb.1994.1037

10.1098/rstb.2005.1634

10.1109/TMI.2003.822821

10.1016/j.neuroimage.2010.02.082

Ben-Hur A, 2002, Pac Symp Biocomput:, 6

10.1046/j.1460-9568.1999.00753.x

10.1212/WNL.50.5.1253

10.1002/mrm.1910340409

10.1073/pnas.0911855107

Blinkov SM, 1968, The Human Brain in Figures and Tables

10.1038/nn1507

Brodmann K, 1909, Localization in the Cerebral Cortex

10.1196/annals.1440.011

Buckner RL, J Neurophysiol

10.1523/JNEUROSCI.5062-08.2009

10.1073/pnas.1005987107

10.1038/nrn2575

10.1038/nrn2459

10.1002/cne.903630408

10.1007/s00429-008-0195-z

10.1016/j.neuroimage.2006.06.054

10.1093/brain/awh622

10.1002/cne.902870403

10.1002/cne.902870402

10.1002/cne.20849

10.1016/j.neuroimage.2008.01.066

10.1146/annurev.neuro.22.1.319

10.1152/jn.2000.84.3.1645

10.1038/nn969

10.1016/S0896-6273(00)80593-0

10.1038/nrn755

10.1016/0042-6989(69)90011-X

10.1007/s00221-003-1591-5

10.1016/S0959-4388(00)00191-4

10.1006/nimg.1998.0395

10.1073/pnas.0601417103

10.1016/j.neuroimage.2005.08.035

10.1073/pnas.93.6.2382

10.1098/rstb.2001.0913

10.1002/cne.10731

10.1002/cne.903340111

10.1073/pnas.0704320104

10.1007/BF00237343

10.1016/j.neuroimage.2004.12.034

10.1093/cercor/7.2.181

10.1038/369525a0

10.1146/annurev.ph.31.030169.002315

10.1046/j.1460-9568.2001.01399.x

10.1093/cercor/1.1.1

10.1109/42.906426

10.1093/cercor/bhm225

10.1006/nimg.1998.0396

10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4

10.1073/pnas.0604187103

10.1038/nrn2201

10.1073/pnas.0504136102

Frahm HD, 1984, J Hirnforsch, 25, 537

10.1016/0006-8993(83)91103-4

10.1002/hbm.460020107

10.1093/brain/88.2.237

10.1038/382805a0

10.1006/nimg.1999.0440

10.1007/978-3-642-18910-4_1

10.1146/annurev.neuro.29.051605.113038

10.1146/annurev.ne.11.030188.001033

10.1007/978-3-540-75757-3_14

10.1002/cne.902470303

10.1006/nimg.2001.0858

10.1016/S0896-6273(02)00741-9

10.1073/pnas.0135058100

10.1073/pnas.0308627101

10.1016/j.neuroimage.2009.06.060

10.1146/annurev.neuro.27.070203.144220

10.1038/681

10.1016/j.neuroimage.2007.01.033

10.1371/journal.pbio.0060159

10.1046/j.0953-816x.2001.01472.x

10.1126/science.271.5250.776

10.1073/pnas.1001229107

10.1016/j.neuroimage.2009.03.036

10.1016/j.neuroimage.2007.10.033

10.1073/pnas.0811168106

10.1113/jphysiol.1962.sp006837

10.1523/JNEUROSCI.22-16-07195.2002

10.1016/S0959-4388(98)80041-X

10.1037/11059-000

10.1093/cercor/11.2.114

10.1006/nimg.2002.1132

10.1073/pnas.0403743101

10.1523/JNEUROSCI.0573-08.2008

10.1002/cne.901810206

10.1093/brain/93.4.793

10.1002/cne.901750403

10.1146/annurev.ps.38.020187.001021

10.1098/rstb.1971.0106

10.1002/cne.902190403

10.1523/JNEUROSCI.2069-10.2010

10.1002/cne.10842

10.1016/S0896-6273(04)00047-9

10.1016/0168-0102(91)90116-G

10.1073/pnas.89.12.5675

10.1002/hbm.20345

10.1162/089976604773717621

10.1523/JNEUROSCI.1657-06.2006

10.1016/j.neuroimage.2009.12.106

10.1002/cne.10243

10.1038/87490

10.1038/nature06976

10.1093/cercor/8.1.40

10.1002/cne.903380109

10.1073/pnas.92.18.8135

10.1093/cercor/bhj181

10.1162/jocn.2009.21407

10.1162/jocn.2007.19.9.1498

10.1093/cercor/bhq201

10.1002/cne.902510302

10.1002/cne.903110402

10.1016/0166-4328(85)90068-3

10.1523/JNEUROSCI.03-12-02563.1983

10.1002/cne.902660407

10.1523/JNEUROSCI.23-15-06209.2003

10.1002/cne.902120104

10.1002/ana.410100402

10.1093/brain/121.6.1013

10.1002/ana.410190403

10.1002/ana.410280502

10.1523/JNEUROSCI.0220-09.2009

10.1002/cne.902560108

10.1016/j.neuron.2010.05.025

10.1073/pnas.89.13.5951

10.1006/nimg.1997.0289

10.1016/j.neuropsychologia.2005.11.001

10.1016/j.tics.2004.05.009

10.1016/0006-8993(69)90141-3

10.1002/cne.902040208

10.1038/nrn893

10.1093/brain/123.11.2273

10.1002/cne.21048

10.1098/rstb.2005.1631

10.1016/j.crpv.2004.01.006

10.1016/j.neuroimage.2010.05.005

Polimeni JR, 2005, Soc Neurosci Abstr

10.1002/cne.902480303

10.1126/science.3289116

10.1016/j.neuron.2010.08.017

Preuss T, 2004, The Cognitive Neurosciences, 3, 5

Raichle ME, 1997, Handbook of Physiology. The Nervous System. Higher Functions of the Brain, 643

10.1093/cercor/5.4.323

10.1016/S0013-4694(98)00022-4

10.1016/0006-8993(79)90485-2

10.1126/science.1148763

10.1002/hbm.20348

10.1016/0377-0427(87)90125-7

10.1002/cne.21577

10.1111/j.1467-9280.2006.01768.x

10.1016/j.conb.2006.03.001

10.1093/cercor/bhm241

10.1093/cercor/bhm116

10.1006/nimg.1998.0385

10.1002/(SICI)1097-0193(1998)6:5/6<339::AID-HBM3>3.0.CO;2-Q

10.1523/JNEUROSCI.5587-06.2007

10.1016/j.neuroimage.2004.03.032

10.1109/TMI.2006.887364

10.1523/JNEUROSCI.08-11-04049.1988

10.1007/BF00237280

10.1002/cne.903430308

10.1371/journal.pcbi.1000808

10.1126/science.7754376

10.1126/science.1063695

10.1523/JNEUROSCI.3335-10.2011

10.1152/jn.2001.86.4.1916

10.1152/jn.2001.85.3.1309

10.1046/j.1460-9568.2003.02540.x

10.1152/jn.00343.2003

10.1523/JNEUROSCI.19-21-09480.1999

10.1073/pnas.0905267106

10.1016/j.neuroimage.2004.07.051

10.1002/cne.903530210

10.1016/0166-4328(85)90067-1

10.1002/cne.903500402

10.1523/JNEUROSCI.0991-07.2007

10.1006/nimg.2001.0895

Talairach J, 1988, Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging

10.1007/s00221-002-1078-9

10.1016/j.neuroimage.2006.11.054

10.1016/S0896-6273(00)80659-5

10.1093/cercor/11.4.298

10.1523/JNEUROSCI.15-04-03215.1995

10.1093/cercor/5.1.39

10.1002/cne.902480204

10.1016/j.neuroimage.2005.03.035

10.1016/j.neuroimage.2007.12.025

10.1152/jn.00783.2009

10.1016/j.neuroimage.2005.06.058

Van Essen DC, 2004, The Visual Neurosciences, 507

10.1016/j.neuroimage.2009.06.009

10.1126/science.1734518

10.1016/j.neuron.2007.10.015

10.1113/jphysiol.1978.sp012269

10.1016/j.neuropsychologia.2008.01.004

10.1152/jn.90355.2008

10.1038/nature05758

10.1152/jn.00048.2006

von Bonin G, 1947, The Neocortex of Macaca Mulatta

10.1016/j.tics.2005.07.001

10.1098/rstb.2005.1628

10.1016/j.neuron.2007.10.012

10.1162/089892901564108

10.1016/j.neuroimage.2009.09.063

10.1109/TMI.2009.2030797

10.1109/TMI.2010.2049497

10.1016/0006-8993(69)90110-3

Zilles K, 1995, J Anat, 187, 515