The novel llama-human chimeric antibody has potent effect in lowering LDL-c levels in hPCSK9 transgenic rats
Tóm tắt
The advent of proprotein convertase subtilisin/kexin type 9 (PCSK9)–inhibiting drugs have provided an effective, but extremely expensive treatment for the management of low density lipoprotein (LDL). Our aim was to explore a cost-effective application of camelid anti-PCSK9 single domain antibodies (sdAbs), which are high variable regions of the camelid heavy chain antibodies (VHHs), as a human PCSK9 (hPCSK9) inhibitor. One female llama was immunized with hPCSK9. Screening of high affinity anti-PCSK9 VHHs was carried out based on surface plasmon resonance (SPR) technology. We reported a lysate kinetic analysis method improving the screening efficiency. To increase the serum half-life and targeting properties, the constant region fragment of the human immunoglobulin gamma sub-type 4 (IgG4 Fc) was incorporated to form a novel llama-human chimeric molecule (VHH-hFc). The PCSK9 inhibiting effects of the VHH proteins were analyzed in two human liver hepatocellular cells (HepG2 and Huh7) and in the hPCSK9 transgenic Sprague–Dawley (SD) rat model. The hPCSK9 antagonistic potency of the bivalent VHH-hFc exceeded the monovalent VHH (P < 0.001) in hepatocarcinoma cells. Furthermore, the llama-human chimeric VHH-Fc protein had a similar reduction (~ 40%) of the LDL-c and total cholesterol when compared to the approved evolocumab in transgenic SD rat model, but with low cost. More surprisingly, the chimeric heavy chain antibodies could be persevered for 3 months at room temperature with little loss of the affinity. Due to the high yield and low cost of Pichia pastoris, lipid-lowering effect and strong stability, the llama-human chimeric antibody (VHH-Fc) offers a potent therapeutic candidate for the control of the serum lipid level.
Tài liệu tham khảo
Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34(2):154–156. https://doi.org/10.1038/ng1161
Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2005) Prokaryotic expression of antibodies. Cancer Metast Rev 24(4):501–519. https://doi.org/10.1007/s10555-005-6193-1
Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3):521–526
Arbel R, Hammerman A, Triki N, Greenberg D (2016) PCSK9 inhibitors may improve cardiovascular outcomes-Can we afford them? Int J Cardiol 220:242–245. https://doi.org/10.1016/j.ijcard.2016.06.126
Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233. https://doi.org/10.1111/j.1476-5381.2009.00190.x
Cholesterol Treatment Trialists C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 376(9753):1670–1681. https://doi.org/10.1016/s0140-6736(10)61350-5
Coppieters K, Dreier T, Silence K, de Haard H, Lauwereys M, Casteels P et al (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54(6):1856–1866. https://doi.org/10.1002/art.21827
Djender S, Schneider A, Beugnet A, Crepin R, Desrumeaux KE, Romani C et al (2014) Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microb Cell Fact 13:140. https://doi.org/10.1186/s12934-014-0140-1
Essalmani R, Weider E, Marcinkiewicz J, Chamberland A, Susan-Resiga D, Roubtsova A et al (2018) A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice. Biol Chem 399(12):1363–1374. https://doi.org/10.1515/hsz-2018-0194
Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B et al (2000) Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78(1):11–21
Glockshuber R, Malia M, Pfitzinger I, Pluckthun A (1990) A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29(6):1362–1367
Goncalves AM, Pedro AQ, Maia C, Sousa F, Queiroz JA, Passarinha LA (2013) Pichia pastoris: a recombinant microfactory for antibodies and human membrane proteins. J Microbiol Biotechnol 23(5):587–601. https://doi.org/10.4014/jmb.1210.10063
Hofmann SL, Russell DW, Brown MS, Goldstein JL, Hammer RE (1988) Overexpression of low density lipoprotein (LDL) receptor eliminates LDL from plasma in transgenic mice. Science 239(4845):1277–1281
Jorgensen ML, Friis NA, Just J, Madsen P, Petersen SV, Kristensen P (2014) Expression of single-chain variable fragments fused with the Fc-region of rabbit IgG in Leishmania tarentolae. Microb Cell Fact 13:9. https://doi.org/10.1186/1475-2859-13-9
Kontermann RE (2016) Half-life extended biotherapeutics. Expert Opin Biol Therapy 16(7):903–915. https://doi.org/10.1517/14712598.2016.1165661
Lagace TA, Curtis DE, Garuti R, McNutt MC, Park SW, Prather HB et al (2006) Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J Clin Investig 116(11):2995–3005. https://doi.org/10.1172/JCI29383
Larsen S, Stride N, Hey-Mogensen M, Hansen CN, Bang LE, Bundgaard H et al (2013) Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance. J Am Coll Cardiol 61(1):44–53. https://doi.org/10.1016/j.jacc.2012.09.036
Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P (2018) Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: a case study prior to pharmaceutical development. New Biotechnol 44:31–40. https://doi.org/10.1016/j.nbt.2018.04.006
Li X, Duan X, Yang K, Zhang W, Zhang C, Fu L et al (2016) Comparative analysis of immune repertoires between bactrian camel’s conventional and heavy-chain antibodies. PLoS ONE 11(9):e0161801. https://doi.org/10.1371/journal.pone.0161801
Lipari MT, Li W, Moran P, Kong-Beltran M, Sai T, Lai J et al (2012) Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J Biol Chem 287(52):43482–43491. https://doi.org/10.1074/jbc.M112.380618
Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA et al (2008) Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis 7:22. https://doi.org/10.1186/1476-511X-7-22
Muda M, Gross AW, Dawson JP, He C, Kurosawa E, Schweickhardt R et al (2011) Therapeutic assessment of SEED: a new engineered antibody platform designed to generate mono- and bispecific antibodies. Protein Eng Des Select 24(5):447–454. https://doi.org/10.1093/protein/gzq123
Petrilli WL, Adam GC, Erdmann RS, Abeywickrema P, Agnani V, Ai X et al (2019) From screening to targeted degradation: strategies for the discovery and optimization of small molecule ligands for PCSK9. Cell Chem Biol. https://doi.org/10.1016/j.chembiol.2019.10.002
Peyvandi F, Scully M, Kremer Hovinga JA, Knobl P, Cataland S, De Beuf K et al (2017) Caplacizumab reduces the frequency of major thromboembolic events, exacerbations and death in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 15(7):1448–1452. https://doi.org/10.1111/jth.13716
Roth EM, Davidson MH (2018) PCSK9 Inhibitors: mechanism of Action, Efficacy, and Safety. Rev Cardiovasc Med 19(S1):S31–S46
Saremi A, Bahn G, Reaven PD, Investigators V (2012) Progression of vascular calcification is increased with statin use in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care 35(11):2390–2392. https://doi.org/10.2337/dc12-0464
Scognamiglio M, Costa D, Sorriento A, Napoli C (2019) Current therapy and nutraceuticals for the treatment of patients with dyslipidemias. Curr Pharm Des. https://doi.org/10.2174/1381612825666190130101108
Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S et al (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 100(3):928–933. https://doi.org/10.1073/pnas.0335507100
Shen Y, Li H, Zhao L, Li G, Chen B, Guo Q et al (2017) Increased half-life and enhanced potency of Fc-modified human PCSK9 monoclonal antibodies in primates. PLoS ONE 12(8):e0183326. https://doi.org/10.1371/journal.pone.0183326
Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL (1996) Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Investig 98(7):1575–1584. https://doi.org/10.1172/JCI118951
Taylor BA, Thompson PD (2016) Statins and their effect on PCSK9-impact and clinical relevance. Curr Atheroscler Rep 18(8):46. https://doi.org/10.1007/s11883-016-0604-3
Vincke C, Gutierrez C, Wernery U, Devoogdt N, Hassanzadeh-Ghassabeh G, Muyldermans S (2012) Generation of single domain antibody fragments derived from camelids and generation of manifold constructs. Methods Mol Biol 907:145–176. https://doi.org/10.1007/978-1-61779-974-7_8
Weider E, Susan-Resiga D, Essalmani R, Hamelin J, Asselin MC, Nimesh S et al (2016) Proprotein convertase subtilisin/kexin type 9 (PCSK9) single domain antibodies are potent inhibitors of low density lipoprotein receptor degradation. J Biol Chem 291(32):16659–16671. https://doi.org/10.1074/jbc.M116.717736
Weider E, Susan-Resiga D, Essalmani R, Hamelin J, Asselin MC, Nimesh S et al (2016) Proprotein convertase subtilisin/kexin type 9 (PCSK9) single domain antibodies are potent inhibitors of low density lipoprotein receptor degradation. J Biol Chem 291(51):26586. https://doi.org/10.1074/jbc.A116.717736
Ylera F, Harth S, Waldherr D, Frisch C, Knappik A (2013) Off-rate screening for selection of high-affinity anti-drug antibodies. Anal Biochem 441(2):208–213. https://doi.org/10.1016/j.ab.2013.07.025
Zhang Y, Ultsch M, Skelton NJ, Burdick DJ, Beresini MH, Li W et al (2017) Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Nat Struct Mol Biol 24(10):848–856. https://doi.org/10.1038/nsmb.3453