The multifractal spectrum of statistically self-similar measures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arbeiter, M. (1992). Construction of random fractal measures by branching processes,Stoch. and Stoch. Reps. 39, 195–212.
Bessis, D., Paladin, G., Turchetti, G., and Vaienti, S. (1988). Generalized dimensions, and Liapunov exponents from the pressure function for strange sets,J. Stat. Phys. 51, 109–134.
Cawley, R., and Mauldin, R. D. (1992). Multifractal decomposition of Moran fractals,Adv. Math. 92, 196–236.
Edgar, G. A., and Mauldin, R. D. (1992). Multifractal decompositions of digraph recursive fractals,Proc. Lond. Math. Soc. 65, 604–628.
Geronimo, J. and Hardin, D. (1989). An exact formula for the measure dimension associated with a class of piecewise linear maps.Constr. Approx. 5, 89–98.
Graf, S., Mauldin, R. D., and Williams, S. C. (1988). The exact Hausdorff dimension in random recursive constructions,Mem. Am. Math. Soc. 71, #381.
Hall, P., and Heyde, C. C. (1980).Martingale Limit Theory and its Applications, Academic Press.
Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., and Shraiman, B. (1986). Fractal measures and their singularities: the characterization of strange sets,Phys. Rev.,A33, 1141–1151.
Holley, R., and Waymire, E. (1992). Multifractal dimensions and scaling exponents for strongly bounded random cascades,Ann. Appl. Prob.,2, 819–845.
Kahane, J.-P. (1974). Sur le modèle de turbulence de Benoit Mandelbrot,C.R. Acad. Sci. Paris,278A, 621–623.
Mandelbrot, B. B. (1982).The Fractal Geometry of Nature, W. H. Freeman.
Mauldin, R. D., and Williams, S. C. (1986). Random recursive constructions: asymptotic geometric and topological properties,Trans. Am. Math. Soc.,295, 325–346.
Patzschke, N., and Zähle, U. (1990). Self-similar random measures IV—The recursive construction model of Falconer, Graf, Mauldin, and Williams,Math. Nachr.,149, 285–302.
Peyrière, J. (1974). Turbulence et dimension de Hausdorff,C.R. Acad. Sci. Paris,278A, 567–569.
Rand, D. (1989). The singularity spectrumf(α) for cookie cutters,Ergod. Theor. Dynam. Sys. 9, 527–541.
Tricot, C. (1991). Rectifiable and fractal sets, inFractal Geometry and Analysis, Kluwer. pp. 367–403.
Olsen, L. (1994).Random Geometrically Graph Directed Self-similar Multifractals, Pitman, to appear.