The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors

Nature Medicine - Tập 7 Số 6 - Trang 706-711 - 2001
Roberto Pola1, Leona Ling2, Marcy Silver3, Michael J. Corbley2, Marianne Kearney3, R. Blake Pepinsky2, R Shapiro2, Frederick R. Taylor2, Darren P. Baker2, Takayuki Asahara3, Jeffrey M. Isner3
1Department of Medicine; St. Elizabeth's Medical Center, Tufts University School of Medicine; Boston Massachusetts USA
2Biogen, Inc., Cambridge, USA
3Department of Medicine, St Elizabeth’s Medical Center, Tufts University School of Medicine, Boston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383, 407–413 (1996).

Johnson, R.L. & Tabin, C.J. Molecular models for vertebrate limb development. Cell 90, 979–990 (1997).

Pepicelli, C.V., Lewis, P.M. & McMahon, A.P. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 8, 1083–1086 (1998).

Ramalho-Santos, M., Melton, D.A. & McMahon, A.P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763–2772 (2000).

St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol. 8, 1058–1068 (1998).

St-Jacques, B., Hammerschmidt, M. & McMahon, A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086 (1999).

Bitgood, M.J., Shen, L. & McMahon, A.P. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr. Biol. 6, 298–304 (1996).

Parmantier, E. et al. Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths. Neuron 23, 713–724 (1999).

Porter, J.A., Young, K.E. & Beachy, P.A. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

Pepinsky, R.B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

Fuse, N. et al. Sonic hedgehog signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc. Natl. Acad. Sci. USA 96, 10992–10999 (1999).

Zardoya, R., Abouheif, E. & Meyer, A. Evolution and orthology of hedgehog genes. Trends Genet. 12, 496–497 (1996).

Bitgood, M.J. & McMahon, A.P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell–cell interaction in the mouse embryo. Dev. Biol. 172, 126–138 (1995).

Ingham, P.W. Transducing hedgehog: the story so far. EMBO J. 17, 3505–3511 (1998).

Stone, D.M. et al. Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J. Cell. Sci. 112, 4437–4448 (1999).

Kogerman, P. et al. Mammalian Suppressor-of-Fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nature Cell. Biol. 1, 312–319 (1999).

Ding, Q. et al. Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli. Curr. Biol. 9, 1119–1122 (1999).

Monnier, V., Dussillol, F., Alves, G., Lamour-Isnard, C. & Plessis, A. Suppressor of fused links fused and Cubitus interruptus on the hedgehog signaling pathway. Curr. Biol. 8, 583–586 (1998).

Sisson, J.C., Ho, K.S., Suyama, K. & Scott, M.P. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235–245 (1997).

Robbins, D.J. et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesis-related protein costal2. Cell 90, 225–234 (1997).

Kalderon, D. Hedgehog signalling: Ci complex cuts and clasps. Curr. Biol. 7, R759–R762 (1997).

Marigo, V., Johnson, R.L., Vortkamp, A. & Tabin, C. Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev. Biol. 180, 273–283 (1996).

Marigo, V. & Tabin, C. Regulation of patched by sonic hedgehog in the developing neural tube. Proc. Natl. Acad. Sci. USA 93, 9346–9351 (1996).

Rowitch, D. H. et al. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci. 19, 8954–8965 (1999).

Brown, L.A. et al. Insights in to early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in type and mutant zebrafish embryos. Mech. Dev. 90, 237–252 (2000).

Vu, T. H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).

Zhou, Z. et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I Proc. Natl. Acad. Sci. USA 97, 4052–4057 (2000).

Mecklenburg, L. et al. Active hair growth (anagen) is associated with angiogenesis. J. Invest. Dermatol. 114, 909–916 (2000).

Wang, L.C. et al. Conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J. Invest. Dermatol. 114, 901–908 (2000).

Rivard, A. et al. Age-dependent impairment of angiogenesis. Circulation 99, 111–120 (1999).

Scheid, A. et al. Hypoxia-regulated gene expression in fetal wound regeneration and adult wound repair. Pediatr. Surg. Int. 16, 232–236 (2000).

Volpert, O.V., Dameron, K.M. & Bouck, N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14, 1492–1502 (1997).

Detmar, M. et al. Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) and its receptor in human skin. J. Invest. Dermatol. 108, 263–268 (1997).

Cho, C.S. et al. CD40 engagement on synovial fibroblasts up-regulates production of vascular endothelial growth factor. J. Immunol. 164, 5055–5061 (2000).

Brogi, E. et al. Indirect angiogenesis cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, while hypoxia upregulates VEGF expression only. Circulation 90, 649–652 (1994).

Asahara, T. et al. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 83, 233–240 (1998).

Suri, C. et al. Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468–471 (1998).

Tokunaga, T. et al. Vascular endothelial growth factor (VEGF) mRNA isoforms expression pattern is correlated with liver metastasis and poor prognosis in colon cancer. Br. J. Cancer 77, 998–1002 (1998).

Gale, N.W. & Yancopoulos, G.D. Growth factors acting via endothelail cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 13, 1055–1066 (1999).

Holash, J. et al. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18, 5356–5362 (1999).

Krishnan, V. et al. Mediation of Sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase. Science 278, 1947–1950 (1997).

Pereira, F.A. et al. The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev. 13, 1037–1049 (1999).

Pepinsky, R.B. et al. Mapping sonic hedgehog-receptor interactions by steric interference. J. Biol. Chem. 275, 10995–11001 (2000).

Couffinhal, T. et al. A mouse model of angiogenesis. Am. J. Pathol. 152, 1667–1679 (1998).

Williams, K.P. et al. Functional antagonists of sonic hedgehog reveal the importance of the N terminus for activity. J. Cell. Sci. 112, 4405–4414 (1999).