The minimal period problem of classical Hamiltonian systems with even potentials

Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire - Tập 10 Số 6 - Trang 605-626 - 1993
Yiming Long1
1Nankai Institute of Mathematics Nankai University, Tianjin 300071, P.R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambrosetti, 1973, Dual Variational Methods in Critical Point Theory, J. Funct. Anal., Vol. 14, 343, 10.1016/0022-1236(73)90051-7

Ekeland, 1984, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. I.H.P. Anal. non linéaire, Vol. 1, 19, 10.1016/S0294-1449(16)30430-9

Ekeland, 1986, An Index Theory for Periodic Solutions of Convex Hamiltonian Systems, Proc. Symp. in Pure Math., Vol. 45, 395, 10.1090/pspum/045.1/843575

Ekeland, 1990

Ekeland, 1985, Periodic Solutions with Prescribed Period for Convex Autonomous Hamiltonian Systems, Inven. Math., Vol. 81, 155, 10.1007/BF01388776

N. Ghoussoub, Location, Multiplicity and Morse Indices of Min-Max Critical Points, Preprint.

Girardi, 1983, Some Results on Solutions of Minimal Period to Superquadratic Hamiltonian Equations, Nonlinear Anal. T.M.A., Vol. 7, 475, 10.1016/0362-546X(83)90039-1

Girardi, 1986, Solutions of Minimal Period for a Class of Nonconvex Hamiltonian Systems and Applications to the Fixed Energy Problem, Nonlinear Anal. T.M.A., Vol. 10, 371, 10.1016/0362-546X(86)90134-3

Girardi, 1987, Periodic Solutions of Convex Autonomous Hamiltonian Systems with a Quadratic Growth at the Origin and Superquadratic at Infinity, Ann. Mat. pura ed appl., Vol. 147, 21, 10.1007/BF01762410

Girardi, 1991, Dual Morse Index Estimates for Periodic Solutions of Hamiltonian Systems in Some Nonconvex Superquadratic Case, Nonlinear Anal. T.M.A., Vol. 17, 481, 10.1016/0362-546X(91)90143-O

M. Girardi and M. Matzeu, Essential Critical Points of Linking Type and Solutions of Minimal Period to Superquadratic Hamiltonian Systems, Preprint, 1991.

Hofer, 1985, A Geometric Description of the Neighbourhood of a Critical Point Given by the Mountain-Pass Theorem, J. London Math. Soc., Vol. 31, 556

Krasnosel’skii, 1963

Lazer, 1988, Nontrivial Solutions of Operator Equations and Morse Indices of Critical Points of Min-Max Type, Nonlinear Anal. T.M.A., Vol. 12, 761, 10.1016/0362-546X(88)90037-5

Y. Long, The Minimal Period Problem of Periodic Solutions for Autonomous Superquadratic Second Order Hamiltonian System, Preprint of Nankai, Inst. Math. Nankai Univ., April 1991. Revised version, Preprint of F.I. Math. E.T.H.-Zürich, Nov. 1991, May 1992, J. Diff Equa. (to appear).

Rabinowitz, 1978, Periodic Solutions of Hamiltonian Systems, Comm. Pure Appl. Math., Vol. 31, 157, 10.1002/cpa.3160310203

Rabinowitz, 1986, Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S. Reg. Conf. Ser. in Math.

Rabinowitz, 1987, On the Existence of Periodic Solutions for a class of Symmetric Hamiltonian Systems, Nonlinear Anal. T.M.A., Vol. 11, 599, 10.1016/0362-546X(87)90075-7

Solimini, 1989, Morse Index Estimates in Min-Max Theorems, Manus. Math., Vol. 63, 421, 10.1007/BF01171757

Tian, 1984, On the Mountain-Pass Lemma, Kexue Tongbao, Vol. 29, 1151

Amann, 1980, Nontrivial Solutions for a Class of Nonresonance Problems and Applications to Nonlinear Defferential Equations, Ann. Scuola Norm. Super. Pisa, Vol. 7, 539

Ambrosetti, 1987, Solutions with Minimal Period for Hamiltonian Systems in a Potential Well, Ann. Inst. Henri-Poincaré, Anal, non linéaire, Vol. 4, 275, 10.1016/S0294-1449(16)30369-9

Ambrosetti, 1981, Solutions of Minimal Period for a Class of Convex Hamiltonian Systems, Math. Ann., Vol. 255, 405, 10.1007/BF01450713

Clarke, 1980, Hamiltonian Trajectories Having Prescribed Minimal Period, Comm. Pure Appl. Math., Vol. 33, 103, 10.1002/cpa.3160330202

Deng, 1984, Minimal Period Solutions of a Class of Hamiltonian Equation Systems, Acta Math. Sinica, Vol. 27, 664

Rabinowitz, 1982, Periodic Solutions of Hamiltonian Systems: a Survey, S.I.A.M. J. Math. Anal., Vol. 13, 343, 10.1137/0513027

Zhang, 1991