Vi khuẩn cộng đồng trong đường hô hấp trên ở sức khỏe và bệnh tật
Tóm tắt
Đường hô hấp trên của con người cung cấp nhiều môi trường cho việc định cư của vi sinh vật. Các cộng đồng vi sinh vật địa phương được hình thành bởi các đặc điểm khác nhau của vị trí cụ thể trong đường hô hấp trên, nhưng cũng bởi sự tương tác với cả yếu tố bên ngoài và nội tại, chẳng hạn như lão hóa, bệnh tật, phản ứng miễn dịch, chức năng khứu giác và thói quen sinh hoạt như hút thuốc. Chúng tôi tóm tắt tại đây những kiến thức hiện tại về vi khuẩn trong đường hô hấp trên trong sức khỏe và bệnh tật, thảo luận về các vấn đề phương pháp, và xem xét khả năng của vi khuẩn mũi có thể được sử dụng cho chẩn đoán y tế và như một mục tiêu cho liệu pháp.
Từ khóa
Tài liệu tham khảo
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7. https://doi.org/10.1126/science.1177486 .
Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550:61. https://doi.org/10.1038/nature23889 .
de Steenhuijsen Piters WAA, Sanders EAM, Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philos Trans R Soc B Biol Sci. 2015;370:20140294. https://doi.org/10.1098/rstb.2014.0294 .
Dickson R, Erb-Downward J, Martinez F, Huffnagle G. The microbiome and the respiratory tract. HHS Public Access. 2017;78:481–504.
Lighthart B. Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. 2000. https://link.springer.com/content/pdf/10.1023%2FA%3A1007694618888.pdf . Accessed 22 Oct 2018.
Copeland E, Leonard K, Carney R, Kong J, Forer M, Naidoo Y, et al. Chronic rhinosinusitis: Potential role of microbial dysbiosis and recommendations for sampling sites. Front Cell Infect Microbiol. 2018;8:57. https://doi.org/10.3389/fcimb.2018.00057 .
Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5. https://doi.org/10.1073/pnas.1002601107 .
de Steenhuijsen Piters WAA, Huijskens EGW, Wyllie AL, Biesbroek G, Van Den Bergh MR, Veenhoven RH, et al. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J. 2016;10:97–108.
Whelan FJ, Verschoor CP, Stearns JC, Rossi L, Luinstra K, Loeb M, et al. The loss of topography in the microbial communities of the upper respiratory tract in the elderly. Ann Am Thorac Soc. 2014;11:513–21.
Bassis CM, Tang AL, Young VB, Pynnonen MA. The nasal cavity microbiota of healthy adults. Microbiome. 2014;2:27.
Shilts MH, Rosas-Salazar C, Tovchigrechko A, Larkin EK, Torralba M, Akopov A, et al. Minimally Invasive sampling method identifies differences in taxonomic richness of nasal microbiomes in young infants associated with mode of delivery. Microb Ecol. 2016;71:233–42.
Stearns JC, Davidson CJ, Mckeon S, Whelan FJ, Fontes ME, Schryvers AB, et al. Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J. 2015;9:1246–59. https://doi.org/10.1038/ismej.2014.250 .
Koskinen K, Pausan MR, Perras AK, Bang MBC, Mora M, Schilhabel A, et al. First insights into the diverse human archaeome: Specific detection of archaea in the gastrointestinal tract. MBio. 2017;8:1–17.
Vayssier-Taussat M, Albina E, Citti C, Cosson J-F, Jacques M-A, Lebrun M-H, et al. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol. 2014;4:29. https://doi.org/10.3389/fcimb.2014.00029 .
Abreu NA, Nagalingam NA, Song Y, Roediger FC, Pletcher SD, Goldberg AN, et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med. 2012;4:151ra124. https://doi.org/10.1126/scitranslmed.3003783 .
Coburn B, Wang PW, Diaz Caballero J, Clark ST, Brahma V, Donaldson S, et al. Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep. 2015;5:10241. https://doi.org/10.1038/srep10241 .
Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92. https://doi.org/10.1016/j.chom.2014.02.005 .
Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38:159–65. https://doi.org/10.2337/dc14-0769 .
Petersen C, Round JL. Microreview Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16:1024–33.
Hoggard M, Waldvogel-Thurlow S, Zoing M, Chang K, Radcliff FJ, Wagner Mackenzie B, et al. Inflammatory endotypes and microbial associations in chronic rhinosinusitis. Front Immunol. 2018;9:2065. https://doi.org/10.3389/fimmu.2018.02065 .
Bernstein JA. Characterizing rhinitis subtypes. Am J Rhinol Allergy. 2013;27:457–60. https://doi.org/10.2500/ajra.2013.27.3983 .
Ginat DT. Posttreatment imaging of the paranasal sinuses following endoscopic sinus surgery. Neuroimaging Clin N Am. 2015;25:653–65. https://doi.org/10.1016/J.NIC.2015.07.008 .
Principi N, Esposito S. Nasal irrigation: an imprecisely defined medical procedure. Int J Environ Res Public Health. 2017;14. https://doi.org/10.3390/ijerph14050516 .
Ramakrishnan VR, Holt J, Nelson LF, Ir D, Robertson CE, Frank DN. Determinants of the nasal microbiome: pilot study of effects of intranasal medication use. Allergy Rhinol (Providence). 2018;9:2152656718789519. https://doi.org/10.1177/2152656718789519 .
Feazel LM, Robertson CE, Ramakrishnan VR, Frank DN. Microbiome Complexity and Staphylococcus aureus in chronic rhinosinusitis. Laryngoscope. 2012;122:467–72. https://doi.org/10.1002/lary.22398 .
Prevaes SMPJ, De Winter-De Groot KM, Janssens HM, De Steenhuijsen Piters WAA, Tramper-Stranders GA, Wyllie AL, et al. Development of the nasopharyngeal microbiota in infants with cystic fibrosis. Am J Respir Crit Care Med. 2016;193:504–15.
Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17:704–15. https://doi.org/10.1016/j.chom.2015.03.008 .
Smith TL, Litvack JR, Hwang PH, Loehrl TA, Mace JC, Fong KJ, et al. Determinants of outcomes of sinus surgery: a multi-institutional prospective cohort study. Otolaryngol Head Neck Surg. 2010;142:55–63. https://doi.org/10.1016/j.otohns.2009.10.009 .
Lal D, Keim P, Delisle J, Barker B, Rank MA, Chia N, et al. Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int Forum Allergy Rhinol. 2017;7:561–9. https://doi.org/10.1002/alr.21934 .
Luna PN, Hasegawa K, Ajami NJ, Espinola JA, Henke DM, Petrosino JF, et al. The association between anterior nares and nasopharyngeal microbiota in infants hospitalized for bronchiolitis. Microbiome. 2018;6:1–14.
Zhou Y, Mihindukulasuriya KA, Gao H, La Rosa PS, Wylie KM, Martin JC, et al. Exploration of bacterial community classes in major human habitats. Genome Biol. 2014;15:R66.
Yan M, Pamp SJ, Fukuyama J, Hwang PH, Cho D-Y, Holmes S, et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe. 2013;14:631–40.
Sahin-Yilmaz A, Naclerio RM. Anatomy and physiology of the upper airway. Proc Am Thorac Soc. 2011;8:31–9. https://doi.org/10.1513/pats.201007-050RN .
Jones N. The nose and paranasal sinuses physiology and anatomy. Adv Drug Deliv Rev. 2001;51:5–19. https://doi.org/10.1016/S0169-409X(01)00172-7 .
Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Am Soc Microbiol. 2012;76:46–65.
Li Z, Nair SK. Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci. 2012;21:1403–17.
Patel NN, Workman AD, Cohen NA. Role of taste receptors as sentinels of innate immunity in the upper airway. J Pathog. 2018;2018:9541987.
Cohen N. Sinonasal mucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl. 2006;196:20–6 www.ncbi.nlm.nih.gov/pubmed/17040014 .
Ali M. Histology of the human nasopharyngeal mucosa. J Anat. 1965;99:657–72 https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC1270703&blobtype=pdf . Accessed 5 Nov 2018.
Bell GW, Joshi BB, Macleod RI. Maxillary sinus disease: diagnosis and treatment. Br Dent J. 2011;210:113–8. https://doi.org/10.1038/sj.bdj.2011.47 .
Proctor DM, Relman DA, Section D, Alto P. The landscape ecology and microbiota of the human nose, mouth and throat. Cell Hot Microbe. 2018;21:421–32.
Koskinen K, Reichert JL, Hoier S, Schachenreiter J, Duller S, Moissl-Eichinger C, et al. The nasal microbiome mirrors and potentially shapes olfactory function. Sci Rep. 2018;8:1–11.
Shroff K, Meslin K, Cebra J. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun. 1995;63:3904–13.
Casado B, Pannell LK, Iadarola P, Baraniuk JN. Identification of human nasal mucous proteins using proteomics. Proteomics. 2005;5:2949–59.
Wanner A, Salathé M, O’Riordan T. Mucociliary clearance in the airways. Am J Respir Crit Care Med. 1996;154:1868–902.
Schenck LP, Surette MG, Bowdish DME. Composition and immunological significance of the upper respiratory tract microbiota. FEBS Lett. 2016;590:3705–20.
Ooi EH, Wormald PJ, Tan LW. Innate immunity in the paranasal sinuses: a review of nasal host defenses. Am J Rhinol. 2008;22:13–9.
Devine DA, Marsh PD, Meade J. Modulation of host responses by oral commensal bacteria. J Oral Microbiol. 2015;7:26941.
Ivanov I, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12:496–508.
Ganz T. Antimicrobial polypeptides in host defense of the respiratory tract. J Clin Invest. 2002;109:693–7.
Thomas EL, Aune TM. Lactoperoxidase, peroxide, thiocyanate antimicrobial system: correlation of sulfhydryl oxidation with antimicrobial action. Infect Immun. 1978;20:456–63.
Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P, et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest. 2012;122:4145–59.
Parker D, Prince A. Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol. 2011;45:189–201.
Harabuchi Y, Hamamoto M, Shirasaki H, Asakura K, Matsuyama H, Kataura A. Specific immune response of the adenoids to a respiratory antigen. Am J Otolaryngol. 1989;10:138–42.
Rynnel-Dagöö B. The immunological function of the adenoid. The proportions of T and B cells. Acta Otolaryngol. 1976;82:196–8.
Graeme-cook F, Bhan AK, Harris NL. Immunohistochemical characterization of intraepithelial and subepithelial mononuclear cells of the upper airways. Am J Pathol. 1993;143:1416–22.
Brandtzaeg P. Role of J chain and secretory component in receptor-mediated glandular and hepatic transport of immunoglobuiins in man. Scand J Immunol. 1985;22:111–46.
Van Kempen MJP, Rijkers GT, Van Cauwenberge PB. The immune response in adenoids. Int Arch Allergy Immunol. 2000;122:8–19.
Tang X, Hori S, Osamura R, Tsutsumi Y. Reticular crypt epithelium and intra-epithelial lymphoid cells in the hyperplastic human palatine tonsil: an immunohistochemical analysis. Pathol Int. 1995;45:34–44.
des Rieux A, EGE R, Gullberg E, Préat V, Schneider Y-J, Artursson P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci. 2005;25:455–65.
Patel NN, Kohanski MA, Maina IW, Triantafillou V, Workman AD, Tong CCL, et al. Solitary chemosensory cells producing interleukin-25 and group-2 innate lymphoid cells are enriched in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2018;8:900–6.
Kato A, Schleimer RP. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr Opin Immunol. 2007;19:711–20.
Liao B, Cao P, Zeng M, Zhen Z, Wang H, Zhang Y, et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Eur J Allergy Clin Immunol. 2015;70:1169–80.
Finger TE, Böttinger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci U S A. 2003;100:8981–6.
Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I. Formyl peptide receptor- like proteins are a novel family of vomeronasal chemosensors. Nature. 2009;459:574–7.
Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci U S A. 2009;106:9842–7.
Alarie Y. Irritating properties of airborne materials to the upper respiratory tract. Arch Env Heal. 1966;13:433–49.
Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A. 2010;107:3210–5.
Geppetti P, Materazzi S, Nicoletti P. The transient receptor potential vanilloid 1: role in airway inflammation and disease. Eur J Pharmacol. 2006;533:207–14.
Saunders CJ, Christensen M, Finger TE, Tizzano M. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci U S A. 2014;111:6075–80.
Braham H, Cooper S, Anderson C, Tizzano M, Kingdom T, Finger T, et al. Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa. Int Forum Allergy Rhinol. 2013;3:450–7.
Osculati F, Castellucci M, Cinti S, Zancanaro C. The solitary chemosensory cells and the diffuse chemosensory system of the airway. Eur J Histochem. 2007;51(Suppl 1):65–72.
Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112:293–301.
Iwata S, Yoshida R, Ninomiya Y. Taste transductions in taste receptor cells: basic tastes and moreover. Curr Pharm Des. 2014;20:2684–92.
Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 2014;124:1393–405.
Baker EH, George S, Gyi KM, Hodson M, Philips BJ, Baines D, et al. Hyperglycaemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate. J Appl Physiol. 2007;102:1969–75.
Workman AD, Maina IW, Brooks SG, Kohanski MA, Cowart BJ, Mansfield C, et al. The role of quinine-responsive Taste receptor Family 2 in airway immune defense and chronic rhinosinusitis. Front Immunol. 2018;9:624.
Workman AD, Brooks SG, Kohanski MA, Blasetti MT, Cowart BJ, Mansfield C, et al. Bitter and sweet taste tests are reflective of disease status in chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2018;6:1078–80.
Lee RJ, Hariri BM, McMahon DB, Chen B, Doghramjii L, Adappa ND, et al. Bacterial D-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Science Signaling. 2018;10(495):eaam7703.
Camarinha-Silva A, Wos-Oxley ML, Jáuregui R, Becker K, Pieper DH. Validating T-RFLP as a sensitive and high-throughput approach to assess bacterial diversity patterns in human anterior nares. FEMS Microbiol Ecol. 2011;79:98–108.
Wos-Oxley ML, Plumeier I, Von Eiff C, Taudien S, Platzer M, Vilchez-Vargas R, et al. A poke into the diversity and associations within human anterior nare microbial communities. ISME J. 2010;4:839–51. https://doi.org/10.1038/ismej.2010.15 .
Charlson ES, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, et al. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One. 2010;5:1–10.
Wilson M. Microbial inhabitants of humans. Cambridge: Cambridge Univ. Press; 2005. https://doi.org/10.1186/1471-2180-9-259 .
Camarinha-Silva A, Jáuregui R, Pieper DH, Wos-Oxley ML. The temporal dynamics of bacterial communities across human anterior nares. Environ Microbiol Rep. 2012;4:126–32.
Frayman KB, Armstrong DS, Grimwood K, Ranganathan SC. The airway microbiota in early cystic fibrosis lung disease. Pediatr Pulmonol. 2017;52:1384–404.
Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. The infant airway microbiome in health and disease impacts later asthma development. Cell Host Microbe. 2015;17:704–15. https://doi.org/10.1016/j.chom.2015.03.008 .
Biesbroek G, Tsivtsivadze E, Sanders EAM, Montijn R, Veenhoven RH, Keijser BJF, et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190:1283–92.
Biesbroek G, Bosch AATM, Wang X, Keijser BJF, Veenhoven RH, Sanders EAM, et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am J Respir Crit Care Med. 2014;190:298–308.
Von Linstow ML, Schønning K, Hoegh AM, Sevelsted A, Vissing NH, Bisgaard H. Neonatal airway colonization is associated with troublesome lung symptoms in infants. Am J Respir Crit Care Med. 2013;188:1041–2.
Moore H, Jacoby P, Taylor A, Harnett G, Bowman J. V Riley T, et al. The interaction between respiratory viruses and pathogenic bacteria in the upper respiratory tract of asymptomatic aboriginal and non-aboriginal children. Pediatr Infect Dis J. 2010;29:540–5.
van den Bergh MR, Biesbroek G, Rossen JWA, de Steenhuijsen Piters WAA, Bosch AATM, van Gils EJM, et al. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria. PLoS One. 2012;7:e47711. https://doi.org/10.1371/journal.pone.0047711 .
Vissing NH, Chawes BLK, Bisgaard H. Increased risk of pneumonia and bronchiolitis after bacterial colonization of the airways as neonates. Am J Respir Crit Care Med. 2013;188:1246–52.
Camarinha-Silva A, Jáuregui R, Chaves-Moreno D, Oxley APA, Schaumburg F, Becker K, et al. Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ Microbiol. 2014;16:2939–52.
Zhou Y, Gao H, Mihindukulasuriya KA, Rosa PSL, Wylie KM, Vishnivetskaya T, et al. Biogeography of the ecosystems of the healthy human body. Genome Biol. 2013;14:R1. https://doi.org/10.1186/gb-2013-14-1-r1 .
Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514:59–64. https://doi.org/10.1038/nature13786 .
Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2006;908:244–54. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x .
Stämpfli MR, Anderson GP. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol. 2009;9:377 EP.
Macgregor I. Effects of smoking on oral ecology. A review of the literature. Clin Prev Dent. 1989;11:3–7.
Yu G, Phillips S, Gail MH, Goedert JJ, Humphrys MS, Ravel J, et al. The effect of cigarette smoking on the oral and nasal microbiota. Microbiome. 2017;5:1–6. https://doi.org/10.1186/s40168-016-0226-6 .
Mason R. Biology of alveolar type II cells. Respirology. 2006;11(Suppl: S1):2–5.
Ratner AJ, Lysenko ES, Paul MN, Weiser JN. Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc Natl Acad Sci U S A. 2005;102:3429–34. https://doi.org/10.1073/pnas.0500599102 .
Phipps JC, Aronoff DM, Curtis JL, Goel D, O’Brien E, Mancuso P. Cigarette smoke exposure impairs pulmonary bacterial clearance and alveolar macrophage complement-mediated phagocytosis of Streptococcus pneumoniae. Infect Immun. 2010;78:1214–20.
Castranova V, Huffman LJ, Judy DJ, Bylander JE, Lapp LN, Weber SL, et al. Enhancement of nitric oxide production by pulmonary cells following silica exposure. Environ Health Perspect. 1998;106(Suppl 5):1165–9. https://doi.org/10.1289/ehp.98106s51165 .
Chaudhuri N, Sabroe I. Basic science of the innate immune system and the lung. Paediatr Respir Rev. 2008;9:236–42. https://doi.org/10.1016/j.prrv.2008.03.002 .
Bagaitkar J, Demuth DR, Daep CA, Renaud DE, Pierce DL, Scott DA. Tobacco upregulates P. gingivalis fimbrial proteins which induce TLR2 hyposensitivity. PLoS One. 2010;5:e9323.
Garmendia J, Morey P, Bengoechea JA. Impact of cigarette smoke exposure on host-bacterial pathogen interactions. Eur Respir J. 2012;39:467–77.
Goldstein-Daruech N, Cope EK, Zhao K-Q, Vukovic K, Kofonow JM, Doghramji L, et al. Tobacco smoke mediated induction of sinonasal microbial biofilms. PLoS One. 2011;6:e15700.
Kulkarni R, Antala S, Wang A, Amaral FE, Rampersaud R, LaRussa SJ, et al. Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress. Infect Immun. 2012;80:3804–11. https://doi.org/10.1128/IAI.00689-12 .
McEachern EK, Hwang JH, Sladewski KM, Nicatia S, Dewitz C, Mathew DP, et al. Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun. 2015;83:2443–52.
Mutepe ND, Cockeran R, Steel HC, Theron AJ, Mitchell TJ, Feldman C, et al. Effects of cigarette smoke condensate on pneumococcal biofilm formation and pneumolysin. Eur Respir J. 2013;41:392. https://doi.org/10.1183/09031936.00213211 .
Shen P, Whelan FJ, Schenck LP, McGrath JJC, Vanderstocken G, Bowdish DME, et al. Streptococcus pneumoniae colonization is required to alter the nasal microbiota in cigarette smokeexposed mice. Infect Immun. 2017;85:1–14.
Brook I, Gober AE. Recovery of potential pathogens in the nasopharynx of healthy and otitis media-prone children and their smoking and nonsmoking parents. Ann Otol Rhinol Laryngol. 2005;117:727–30.
Greenberg D, Givon-Lavi N, Broides A, Blancovich I, Peled N, Dagan R. The contribution of smoking and exposure to tobacco smoke to Streptococcus pneumoniae and Haemophilus influenzae carriage in children and their mothers. Clin Infect Dis. 2006;42:897–903. https://doi.org/10.1086/500935 .
Sapkota AR, Berger S, Vogel TM. Human pathogens abundant in the bacterial metagenome of cigarettes. Environ Health Perspect. 2009;118:351–6.
Brook I, Gober AE. Effect of smoking cessation on the microbial flora. Arch Otolaryngol Head Neck Surg. 2007;133:135–8. https://doi.org/10.1001/archotol.133.2.135 .
García-Rodríguez J, Fresnadillo M. Dynamics of nasopharyngeal clonization by potential respiratory pathogens. J Antimicrob Chemother. 2002;50(Suppl S2):59–73.
Iles K, Poplawski NK, Couper RT. Passive exposure to tobacco smoke and bacterial meningitis in children. J Paediatr Child Health. 2001;37:388–91.
Morris B, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev. 2013;37:384–406.
Krismer B, Liebeke M, Janek D, Nega M, Rautenberg M, Hornig G, et al. Nutrient limitation governs Staphylococcus aureus metabolism and niche adaptation in the human nose. PLOS Pathog. 2014;10:e1003862.
Ferraris R, Yasharpour S, Lloyd K, Mirzayan R, Diamond J. Luminal glucose concentrations in the gut under normal conditions. Am J Physiol. 1990;259:G822–37.
Lorin M, Gaerlan P, Mandel I. Quantitative composition of nasal secretions in normal subjects. J Lab Clin Med. 1972;80:275–81.
Vanthanouvong V, Roomans G. Methods for determining the composition of nasal fluid by X-ray microanalysis. Microsc Res Tech. 2004;63:122–8.
Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front Micobiology. 2016;7:1–15.
Stubbendieck RM, May DS, Chevrette MG, Temkin MI, Wendt-Pienkowski E, Cagnazzo J, et al. Competition among nasal bacteria suggests a role for siderophore-mediated interactions in shaping the human nasal microbiota. Am Soc Microbiol. 2019;85(10):e02406–18.
Bomar L, Brugger SD, Yost BH, Davies SS, Lemon P. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. MBio. 2016;7:1–13.
Wollenberg MS, Claesen J, Escapa IF, Aldridge KL, Fischbach MA, Lemon P. Propionibacterium -produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. MBio. 2014;5:1–10.
Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, Kolter R. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio. 2010;1:4–6.
Frank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR. The human nasal microbiota and Staphylococcus aureus carriage. PLoS One. 2010;5:e10598.
von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med. 2001;344:11–6.
Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet. 2004;364:703–5.
Consortium HM. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14. https://doi.org/10.1038/nature11234 .
Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2. https://doi.org/10.1126/science.1171700 .
Kuehnert M, Kruszon-Moran D, Hill H, McQuillan G, McAllister S, Fosheim G, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis. 2006;193:172–9.
Gorwitz R, Kruszon-Moran D, McAllister S, MCQuillan G, McDougal L, Fosheim G, et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis. 2008;197:1226–34.
Barbara G, Stanghellini V, Brandi G, Cremon C, Di Nardo G, De Giorgio R, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol. 2005;100:2560–8.
Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535:511–6. https://doi.org/10.1038/nature18634 .
Janek D, Zipperer A, Kulik A, Krismer B, Peschel A. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PLOS Pathog. 2016;12:e1005812.
Thoendel M, Horswill A. Identification of Staphylococcus aureus AgrD residues required for autoinducing peptide biosynthesis. J Biol Chem. 2009;284:21828–38.
Lindsay JA, Riley TV, Meel BJ. Staphylococcus aureus but not Staphylococcus epidermidis can acquire iron from transferrin. Microbiology. 1995;141:197–203.
Schaller M, Loewenstein M, Borelli C, Jacob K, Vogeser M, Burgdorf W, et al. Induction of a chemoattractive proinflammatory cytokine response after stimulation of keratinocytes with Propionibacterium acnes and coproporphyrin III. Br J Dermatol. 2005;153:66–71.
Borelli C, Merk K, Schaller M, Jacob K, Vogeser M, Weindl G, et al. In vivo porphyrin production by P. acnes in untreated acne patients and its modulation by acne treatment. Acta Derm Venereol. 2006;86:316–9.
Bogaert D, De Groot R, Hermans PWM. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004;4:144–54.
Nakatsuji T, Kao MC, Zhang L, Zouboulis CC, Gallo RL, Huang C-M. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating b-defensin-2 expression. J Invest Dermatol. 2010;130:985–94. https://doi.org/10.1038/jid.2009.384 .
Lee H, Andalibi A, Webster P, Moon S, Teufert K, Kang S, et al. Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable. BMC Infect Dis. 2004;4:1–12.
Mahnert A, Blohs M, Pausan M-R, Moissl-Eichinger C. The human archaeome: methodological pitfalls and knowledge gaps. Emerg Top Life Sci. 2018;2:469–82. https://doi.org/10.1042/ETLS20180037 .
Pausan MR, Csorba C, Singer G, Till H, Schoepf V, Santigli E, et al. Measuring the archaeome: detection and quantification of archaea signatures in the human body. bioRxiv. 2018:334748. https://doi.org/10.1101/334748 .
Sogodogo E, Fellag M, Loukil A, Nkamga V, Michel J, Dessi P, et al. Nine cases of methanogenic archaea in refractory sinusitis, an emerging clinical entity. Front Public Heal. 2019;7:38.
Cui L, Morris A, Ghedin E. The human mycobiome in health and disease. Genome Med. 2013;5:63. https://doi.org/10.1186/gm467 .
Korten I, Mika M, Klenja S, Kieninger E, Mack I, Barbani MT, et al. Interactions of respiratory viruses and the nasal microbiota during the first year of life in healthy infants. mSphere. 2016;1:e00312–6. https://doi.org/10.1128/mSphere.00312-16 .
Jung WH, Croll D, Cho JH, Kim YR, Lee YW. Analysis of the nasal vestibule mycobiome in patients with allergic rhinitis. Mycoses. 2015;58:167–72. https://doi.org/10.1111/myc.12296 .
Popgeorgiev N, Temmam S, Raoult D, Desnues C. Describing the silent human virome with an emphasis on giant viruses. Intervirology. 2013;56:395–412. https://doi.org/10.1159/000354561 .
Van der Schans CP. Bronchial mucus transport. Respir Care. 2007;52:1150–6; discussion 1156–8. https://doi.org/10.1016/0952-8180(93)90100-S .
Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord. 2017;33:88–98.
Pail G, Huf W, Pjrek E, Winkler D, Willeit M, Praschak-Rieder N, et al. Bright-light therapy in the treatment of mood disorders. Neuropsychobiology. 2011;64:152–62. https://www.karger.com/ . https://doi.org/10.1159/000328950 .
Hoggard M, Biswas K, Zoing M, Wagner Mackenzie B, Taylor MW, Douglas RG. Evidence of microbiota dysbiosis in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2017;7:230–9. https://doi.org/10.1002/alr.21871 .
Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinol J. 2012;50:1–12. https://doi.org/10.4193/Rhino50E2 .
Foreman A, Jervis-Bardy J, Wormald P-J. Do biofilms contribute to the initiation and recalcitrance of chronic rhinosinusitis? Laryngoscope. 2011;121:1085–91. https://doi.org/10.1002/lary.21438 .
Shin S, Ponikau J, Sherris D, Congdon D, Frigas E, Homburger H, et al. Chronic rhinosinusitis: an enhanced immune response to ubiquitous airborne fungi. J Allergy Clin Immunol. 2004;114:1369–75.
Bachert C, Gevaert P, van Cauwenberge P. Staphylococcus aureus enterotoxins: a key in airway disease? Allergy. 2002;57:480–7.
Mahdavinia M, Keshavarzian A, Tobin MC, Landay A, Schleimer RP. A comprehensive review of the nasal microbiome in chronic rhinosinusitis (CRS). Clin Exp Allergy. 2016;46:21–41. https://doi.org/10.1111/cea.12666 .
Cope EK, Goldberg AN, Pletcher SD, Lynch SV. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome. 2017;5:53. https://doi.org/10.1186/s40168-017-0266-6 .
Choi E-B, Hong S-W, Kim D-K, Jeon SG, Kim K-R, Cho S-H, et al. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy. 2014;69:517–26. https://doi.org/10.1111/all.12374 .
Wagner Mackenzie B, Waite DW, Hoggard M, Douglas RG, Taylor MW, Biswas K. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ Microbiol. 2017;19:381–92. https://doi.org/10.1111/1462-2920.13632 .
Psaltis AJ, Wormald P-J. Therapy of sinonasal microbiome in CRS: a critical approach. Curr Allergy Asthma Rep. 2017;17:59. https://doi.org/10.1007/s11882-017-0726-x .
Dlugaszewska J, Leszczynska M, Lenkowski M, Tatarska A, Pastusiak T, Szyfter W. The pathophysiological role of bacterial biofilms in chronic sinusitis. Eur Arch Otorhinolaryngol. 2016;273:1989–94. https://doi.org/10.1007/s00405-015-3650-5 .
Stephenson M-F, Mfuna L, Dowd SE, Wolcott RD, Barbeau J, Poisson M, et al. Molecular characterization of the polymicrobial flora in chronic rhinosinusitis. J Otolaryngol Head Neck Surg. 2010;39:182–7 http://www.ncbi.nlm.nih.gov/pubmed/20211106 . Accessed 16 Oct 2018.
Ramakrishnan VR, Hauser LJ, Feazel LM, Ir D, Robertson CE, Frank DN. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome. J Allergy Clin Immunol. 2015;136:334–42.e1. https://doi.org/10.1016/J.JACI.2015.02.008 .
Hirschberg A, Kiss M, Kadocsa E, Polyanka H, Szabo K, Razga Z, et al. Different activations of toll-like receptors and antimicrobial peptides in chronic rhinosinusitis with or without nasal polyposis. Eur Arch Otorhinolaryngol. 2016;273:1779–88. https://doi.org/10.1007/s00405-015-3816-1 .
Aurora R, Chatterjee D, Hentzleman J, Prasad G, Sindwani R, Sanford T. Contrasting the microbiomes from healthy volunteers and patients with chronic rhinosinusitis. JAMA Otolaryngol Neck Surg. 2013;139:1328. https://doi.org/10.1001/jamaoto.2013.5465 .
Chalermwatanachai T, Vilchez-Vargas R, Holtappels G, Lacoere T, Jáuregui R, Kerckhof F-M, et al. Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota. Sci Rep. 2018;8:7926. https://doi.org/10.1038/s41598-018-26327-2 .
Brook I. The role of anaerobic bacteria in sinusitis. Anaerobe. 2006;12:5–12. https://doi.org/10.1016/J.ANAEROBE.2005.08.002 .
Kuhar HN, Tajudeen BA, Mahdavinia M, Heilingoetter A, Ganti A, Gattuso P, et al. Relative abundance of nasal microbiota in chronic rhinosinusitis by structured histopathology. Int Forum Allergy Rhinol. 2018. https://doi.org/10.1002/alr.22192 .
Naraghi M, Deroee AF, Ebrahimkhani M, Kiani S, Dehpour A. Nitric oxide: a new concept in chronic sinusitis pathogenesis B. Am J Otolaryngol. 2007;28:334–7.
Carey RM, Workman AD, Hatten KM, Siebert AP, Brooks SG, Chen B, et al. Denatonium-induced sinonasal bacterial killing may play a role in chronic rhinosinusitis outcomes. Int Forum Allergy Rhinol. 2017;7:699–704.
Adappa ND, Truesdale CM, Workman AD, Doghramji L, Mansfield C, Kennedy DW, et al. Correlation of T2R38 taste phenotype and in vitro biofilm formation from nonpolypoid chronic rhinosinusitis patients. Int Forum Allergy Rhinol. 2017;6:783–91.
Bell JS, Spencer JI, Yates RL, Yee SA, Jacobs BM, DeLuca GC. Invited review: From nose to gut – the role of the microbiome in neurological disease. Neuropathol Appl Neurobiol. 2018:nan.12520. https://doi.org/10.1111/nan.12520 .
François A, Grebert D, Rhimi M, Mariadassou M, Naudon L, Rabot S, et al. Olfactory epithelium changes in germfree mice. Sci Rep. 2016;6:24687. https://doi.org/10.1038/srep24687 .
Braak H, Del Tredici K, Rüb U, Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211. https://doi.org/10.1016/S0197-4580(02)00065-9 .
Braak H, Vos RAI, Bohl J, Del Tredici K. Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci Lett. 2006;396:67–72. https://doi.org/10.1016/j.neulet.2005.11.012 .
Haehner A, Boesveldt S, Berendse HW, Mackay-Sim A, Fleischmann J, Silburn PA, et al. Prevalence of smell loss in Parkinson’s disease - a multicenter study. Park Relat Disord. 2009;15:490–4. https://doi.org/10.1016/j.parkreldis.2008.12.005 .
Béraud D, Maguire-Zeiss KA. Misfolded α-synuclein and toll-like receptors: therapeutic targets for Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(Supplement 1):17–20. https://doi.org/10.1016/S1353-8020(11)70008-6 .
Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimer’s Dis. 2015;45:349–62.
Khan F, Oloketuyi SF. A future perspective on neurodegenerative diseases: nasopharyngeal and gut microbiota. J Appl Microbiol. 2016;122:306–20.
Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol. 2015;21:10609–20. https://doi.org/10.3748/wjg.v21.i37.10609 .
Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. Oral and nasal microbiota in Parkinson’s disease. Park Relat Disord. 2017;38:61–7. https://doi.org/10.1016/j.parkreldis.2017.02.026 .
Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33:599–614.
Boutin S, Graeber SY, Weitnauer M, Panitz J, Stahl M, Clausznitzer D, et al. Comparison of microbiomes from different niches of upper and lower airways in children and adolescents with cystic fibrosis. PLoS One. 2015;10:1–19. https://doi.org/10.1371/journal.pone.0116029 .
Prevaes SMPJ, De Steenhuijsen Piters WAA, De Winter-De Groot KM, Janssens HM, Tramper-Stranders GA, Chu MLJN, et al. Concordance between upper and lower airway microbiota in infants with cystic fibrosis. Eur Respir J. 2017;49. https://doi.org/10.1183/13993003.02235-2016 .
Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One. 2012;7:e45001.
Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015;14:293–304. https://doi.org/10.1016/j.jcf.2015.03.012 .
Tracy M, Cogen J, Hoffman LR. The pediatric microbiome and the lung. Curr Opin Pediatr. 2015;27:348–55. https://doi.org/10.1097/MOP.0000000000000212 .
Whiteson KL, Bailey B, Bergkessel M, Conrad D, Delhaes L, Felts B, et al. The upper respiratory tract as a microbial source for pulmonary infections in cystic fibrosis. Parallels from island biogeography. Am J Respir Crit Care Med. 2014;189:1309–15. https://doi.org/10.1164/rccm.201312-2129PP .
Burns JL, Gibson RL, McNamara S, Yim D, Emerson J, Rosenfeld M, et al. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis. 2001;183:444–52.
Jelsbak L, Johansen HK, Frost A-L, Thøgersen R, Thomsen LE, Ciofu O, et al. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun. 2007;75:2214–24. https://doi.org/10.1128/IAI.01282-06 .
Goss CH, Muhlebach MS. Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros. 2011;10:298–306. https://doi.org/10.1016/j.jcf.2011.06.002 .
Tiddens HAWM, Stick SM, Davis S. Multi-modality monitoring of cystic fibrosis lung disease: the role of chest computed tomography. Paediatr Respir Rev. 2014;15:92–7. https://doi.org/10.1016/j.prrv.2013.05.003 .
Mellert TK, Getchell ML, Sparks L, Getchell TV. Characterization of the immune barrier in human olfactory mucosa. Otolaryngol Head Neck Surg. 1992;106:181–8.
Kimmelman CP. Clinical review of olfaction. Am J Otolaryngol. 1993;14:227–39. https://doi.org/10.1016/0196-0709(93)90065-F .
Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol. 2011;2:94. https://doi.org/10.3389/fphys.2011.00094 .
Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol. 2008;6:111–20. https://doi.org/10.1038/nrmicro1836 .
Wilson MT, Hamilos DL. The nasal and sinus microbiome in health and disease. Curr Allergy Asthma Rep. 2014;14:485.
Wegener B-A, Croy I, Hähner A, Hummel T. Olfactory training with older people. Int J Geriatr Psychiatry. 2018;33:212–20. https://doi.org/10.1002/gps.4725 .
Pekala K, Chandra RK, Turner JH. Efficacy of olfactory training in patients with olfactory loss: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2016;6:299–307. https://doi.org/10.1002/alr.21669 .
Liu CM, Price LB, Hungate BA, Abraham AG, Larsen LA, Christensen K, et al. Staphylococcus aureus and the ecology of the nasal microbiome. Sci Adv. 2015;1. https://doi.org/10.1126/sciadv.1400216 .
Ramakrishnan VR, Hauser LJ, Frank DN. The sinonasal bacterial microbiome in health and disease. Curr Opin Otolaryngol Head Neck Surg. 2016;24:20–5. https://doi.org/10.1097/MOO.0000000000000221 .
Bosch AATM, Levin E, van Houten MA, Hasrat R, Kalkman G, Biesbroek G, et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery. EBioMedicine. 2016;9:336–45. https://doi.org/10.1016/j.ebiom.2016.05.031 M4 - Citavi.
Lécuyer H, Audibert J, Bobigny A, Eckert C, Jannière-Nartey C, Buu-Hoï A, et al. Dolosigranulum pigrum causing nosocomial pneumonia and septicemia. J Clin Microbiol. 2007;45:3474–5. https://doi.org/10.1128/JCM.01373-07 .
Boesveldt S, Postma EM, Boak D, Welge-Luessen A, Schöpf V, Mainland JD, et al. Anosmia—a clinical review. Chem Senses. 2017;42:513–23.
Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G. “Sniffin” Sticks’: Olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. 1997. https://academic.oup.com/chemse/article-abstract/22/1/39/383479 . Accessed 11 Jan 2019.
Jain R, Hoggard M, Biswas K, Zoing M, Jiang Y, Douglas R. Changes in the bacterial microbiome of patients with chronic rhinosinusitis after endoscopic sinus surgery. Int Forum Allergy Rhinol. 2017;7:7–15. https://doi.org/10.1002/alr.21849 .
Kern RC. Candidate’s Thesis: Chronic sinusitis and anosmia: pathologic changes in the olfactory mucosa. Laryngoscope. 2009;110:1071–7.
Hornung DE. Nasal anatomy and the sense of smell. Adv Otorhinolaryngol. 2006;63:1–22.
Wiley. Bergey’s Manual of Systematics of Archaea and Bacteria. 2015.
Mygind N, Nielsen LP, Hoffmann H-J, Shukla A, Blumberga G, Dahl R, et al. Mode of action of intranasal corticosteroids. J Allergy Clin Immunol. 2001;108:S16–25. https://doi.org/10.1067/MAI.2001.115561 .
Rogers GB, Shaw D, Marsh RL, Carroll MP, Serisier DJ, Bruce KD. Respiratory microbiota: addressing clinical questions, informing clinical practice. Thorax. 2015;70:74–81. https://doi.org/10.1136/thoraxjnl-2014-205826 .
Wang L-M, Qiao X-L, Ai L, Zhai J-J, Wang X-X. Isolation of antimicrobial resistant bacteria in upper respiratory tract infections of patients. 3. Biotech. 2016;6:166. https://doi.org/10.1007/s13205-016-0473-z .
Perl TM, Cullen JJ, Wenzel RP, Zimmerman MB, Pfaller MA, Sheppard D, et al. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N Engl J Med. 2002;346:1871–7. https://doi.org/10.1056/NEJMoa003069 .
Bode LGM, Kluytmans JAJW, Wertheim HFL, Bogaers D, Vandenbroucke-Grauls CMJE, Roosendaal R, et al. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med. 2010;362:9–17. https://doi.org/10.1056/NEJMoa0808939 .
Choi KJ, Jang DW, Ellison MD, Frank-Ito DO. Characterizing airflow profile in the postoperative maxillary sinus by using computational fluid dynamics modeling: a pilot study. Am J Rhinol Allergy. 2016;30:29–36. https://doi.org/10.2500/ajra.2016.30.4266 .
Kennedy DW. Prognostic factors, outcomes and staging in ethmoid sinus surgery. Laryngoscope. 1992;102(12 Pt 2 Suppl 57):1–18 http://www.ncbi.nlm.nih.gov/pubmed/1453856 . Accessed 9 Oct 2018.
Hauser LJ, Ir D, Kingdom TT, Robertson CE, Frank DN, Ramakrishnan VR. Investigation of bacterial repopulation after sinus surgery and perioperative antibiotics. Int Forum Allergy Rhinol. 2016;6:34–40. https://doi.org/10.1002/alr.21630 .
Jervis-Bardy J, Foreman A, Field J, Wormald PJ. Impaired mucosal healing and infection associated with Staphylococcus aureus after endoscopic sinus surgery. Am J Rhinol Allergy. 2009;23:549–52. https://doi.org/10.2500/ajra.2009.23.3366 .
Tan NC-W, Foreman A, Jardeleza C, Douglas R, Tran H, Wormald PJ. The multiplicity of Staphylococcus aureus in chronic rhinosinusitis: correlating surface biofilm and intracellular residence. Laryngoscope. 2012;122:1655–60. https://doi.org/10.1002/lary.23317 .
Plouin-Gaudon I, Clement S, Huggler E, Chaponnier C, François P, Lew D, et al. Intracellular residency is frequently associated with recurrent Staphylococcus aureus rhinosinusitis. Rhinology. 2006;44:249–54 http://www.ncbi.nlm.nih.gov/pubmed/17216740 . Accessed 9 Oct 2018.
Jervis-Bardy J, Foreman A, Boase S, Valentine R, Wormald P-J. What is the origin of Staphylococcus aureus in the early postoperative sinonasal cavity? Int Forum Allergy Rhinol. 2011;1:308–12. https://doi.org/10.1002/alr.20050 .
Bhattacharyya N, Gopal HV, Lee KH. Bacterial infection after endoscopic sinus surgery: a controlled prospective study. Laryngoscope. 2004;114:765–7. https://doi.org/10.1097/00005537-200404000-00032 .
Rama S, Ballentine R, Hymes A. Science of breath: a practical guide. Honesdale: Himalayan Institute Press; 1998.
Bastier P-L, Lechot A, Bordenave L, Durand M, de Gabory L. Nasal irrigation: from empiricism to evidence-based medicine. A review. Eur Ann Otorhinolaryngol Head Neck Dis. 2015;132:281–5. https://doi.org/10.1016/J.ANORL.2015.08.001 .
Georgitis JW. Nasal hyperthermia and simple irrigation for perennial rhinitis: changes in inflammatory mediators. Chest J. 1994;106:1487–92. https://doi.org/10.1378/CHEST.106.5.1487 .
Hauser LJ, Ir D, Kingdom TT, Robertson CE, Frank DN, Ramakrishnan VR. Evaluation of bacterial transmission to the paranasal sinuses through sinus irrigation. Int Forum Allergy Rhinol. 2016;6:800–6. https://doi.org/10.1002/alr.21755 .
Singhal D, Foreman A, Bardy J-J, Wormald P-J. Staphylococcus aureus biofilms. Laryngoscope. 2011;121:1578–83. https://doi.org/10.1002/lary.21805 .
Psaltis AJ, Foreman A, Wormald P-J, Schlosser RJ. Contamination of sinus irrigation devices: a review of the evidence and clinical relevance. Am J Rhinol Allergy. 2012;26:201–3. https://doi.org/10.2500/ajra.2012.26.3747 .
Tichenor WS, Thurlow J, McNulty S, Brown-Elliott BA, Wallace RJ, Falkinham JO. Nontuberculous mycobacteria in household plumbing as possible cause of chronic rhinosinusitis. Emerg Infect Dis. 2012;18:1612–7. https://doi.org/10.3201/eid1810.120164 .
Yoder JS, Straif-Bourgeois S, Roy SL, Moore TA, Visvesvara GS, Ratard RC, et al. Primary amebic meningoencephalitis deaths associated with sinus irrigation using contaminated tap water. Clin Infect Dis. 2012;55:e79–85. https://doi.org/10.1093/cid/cis626 .
Georas SN, Rezaee F. Epithelial barrier function: at the frontline of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol. 2014;134:509–20.
Soyka MB, Wawrzyniak P, Eiwegger T, Holzmann D, Treis A, Wanke K, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN- g and IL-4. Am Acad Allergy Asthma Immunol. 2012;130:1087–96.
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14.
Martens K, Pugin B, De Boeck I, Spacova I, Steelant B, Seys SF, et al. Probiotics for the airways: potential to improve epithelial and immune homeostasis. Allergy. 2018. https://doi.org/10.1111/all.13495 .
Cope EK, Lynch SV. Novel microbiome-based therapeutics for chronic rhinosinusitis. Curr Allergy Asthma Rep. 2015;15:504.
Mack D, Ahrne S, Hyde L, Wei S, Hollingsworth M. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003;52:827–33.
Rao R, Samak G. Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci. 2013;9:99–107.
Sagar S, Vos AP, Morgan ME, Garssen J, Georgiou NA, Boon L, et al. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma. Biochim Biophys Acta Mol Basis Dis. 1842;2014:573–83. https://doi.org/10.1016/j.bbadis.2014.01.005 .
Blaser M, Bork P, Fraser C, Knight R, Wang J. The microbiome explored: recent insights and future challenges. Nat Rev Microbiol. 2013;11:213–7.
Zheng J, Gänzle MG, Lin XB, Ruan L, Sun M. Diversity and dynamics of bacteriocins from human microbiome. Environ Microbiol. 2015;17:2133–43.
Lebeer S, Vanderleyden J, De Keersmaecker S. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 2010;8:171–84.
Shandilya UK, Jadhav S, Panwar V, Kansal V. Probiotics: potent immunomodulatory tool against allergy. Probiotics Antimicro Prot. 2011;3:151–8.
von der Weid T, Bulliard C, Schiffrin EJ. Induction by a lactic acid bacterium of a population of CD4 ϩ T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10. Clin Diagn Lab Immunol. 2001;8:695–701.
Pochard P, Gosset P, Grangette C, Andre C, Tonnel A, Pestel J, et al. Basic and clinical immunology Lactic acid bacteria inhibit T H 2 cytokine production by mononuclear cells from allergic patients. J Allergy Clin Immunol. 2002;110:617–23.
Christensen HR, Frokiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol. 2002;168:171–8.
Toh ZQ, Anzela A, Tang MLK, Licciardi PV. Probiotic therapy as a novel approach for allergic disease. Front Pharmacol. 2012;3:1–14.
Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A. 2014;111:805–10.
Kwon H, Lee C, So J, Chae C, Hwang J, Sahoo A, et al. Generation of regulatory dendritic cells and CD4+ Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci U S A. 2010;107:159–64.
Jang S, Kim H, Kim Y, Kang M, Kwon J, Seo J, et al. Asthma prevention by Lactobacillus rhamnosus in a mouse model. Allergy Asthma Immunol Res. 2012;4:150–6.
Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013;26:2–18.
Cope EK, Lynch SV. Novel microbiome-based therapeutics for chronic rhinosinusitis. Curr Allergy Asthma Rep. 2015;15:9. https://doi.org/10.1007/s11882-014-0504-y .
Spacova I, Petrova MI, Fremau A, Pollaris L, Vanoirbeek J, Seys S, et al. Intranasal administration of probiotic Lactobacillus rhamnosus GG prevents birch pollen - induced allergic asthma in a murine model. Allergy. 2019;74:100–10.
Wu C, Chen P, Lee Y, Ko J, Lue K. Effects of immunomodulatory supplementation with Lactobacillus rhamnosus on airway inflammation in a mouse asthma model. J Microbiol Immunol Infect. 2016;49:625–35. https://doi.org/10.1016/j.jmii.2014.08.001 .
Kitz R, Martens U, Zieseniß E, Enck P, Rose MA. Probiotic E. faecalis – adjuvant therapy in children with recurrent rhinosinusitis. Cent Eur J Med. 2012;7:7–10.
Pellaton C, Nutten S, Thierry A, Boudousqui C, Barbier N, Blanchard C, et al. Intragastric and intranasal administration of Lactobacillus paracasei NCC2461 modulates allergic airway. Int J Inflam. 2012;2012:686739.
Martensson A, Abolhalaj M, Lindstedt M, Martensson A, Olofsson TC, Vasquez AV, et al. Clinical efficacy of a topical lactic acid bacterial microbiome in chronic rhinosinusitis: a randomized controlled trial. Laryngoscope Investig Otolaryngol. 2017;2:410–6.
Vasquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, et al. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One. 2012;7:e33188.
Butler É, Oien RF, Lindholm C, Olfonsson TC, Nilson B, Vasquez A. A pilot study investigating lactic acid bacterial symbionts from the honeybee in inhibiting human chronic wound pathogens. Int World J. 2014;13:729–38.
Olofsson TC, Vasquez A. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol. 2008;57:356–63.
Olofsson TC, Butler È, Markowicz P, Lindholm C, Larsson L, Vasquez A. Lactic acid bacterial symbionts in honeybees – an unknown key to honey ’ s antimicrobial and therapeutic activities. Int World J. 2016;13:668–79.
Clarke J, Wu H, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4:265–70.
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.