The metallization and superconductivity of dense hydrogen sulfide

Journal of Chemical Physics - Tập 140 Số 17 - 2014
Yinwei Li1,2,3, Jian Hao1,2,3, Hanyu Liu4,2,5, Yanling Li1,2,3, Yanming Ma4,1,6
12Department of Physics and Engineering Physics, University of Saskatchewan, Saskatchewan S7N 5E2, Canada
23State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China
3Jiangsu Normal University 1 School of Physics and Electronic Engineering, , Xuzhou 221116, People's Republic of China
41School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
5University of Saskatchewan 2 Department of Physics and Engineering Physics, , Saskatchewan S7N 5E2, Canada
6Jilin University 3 State Key Laboratory of Superhard Materials, , Changchun 130012, People's Republic of China

Tóm tắt

Hydrogen sulfide (H2S) is a prototype molecular system and a sister molecule of water (H2O). The phase diagram of solid H2S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S–H bond and larger atomic core difference between H and S. Metallization is yet achieved for H2O, but it was observed for H2S above 96 GPa. However, the metallic structure of H2S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H2S at pressure ranges of 10–200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H2S with an estimated maximal transition temperature of ∼80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH4, GeH4, etc.).

Từ khóa


Tài liệu tham khảo

2006, Chem. Soc. Rev., 35, 899, 10.1039/b607523c

2008, Science, 319, 1506, 10.1126/science.1153282

2008, Phys. Rev. Lett., 101, 077002, 10.1103/PhysRevLett.101.077002

2009, Phys. Rev. Lett., 102, 087005, 10.1103/PhysRevLett.102.087005

2007, Phys. Rev. Lett., 98, 117004, 10.1103/PhysRevLett.98.117004

2010, Proc. Natl. Acad. Sci. U.S.A., 107, 1317, 10.1073/pnas.0908342107

2008, Phys. Rev. Lett., 101, 107002, 10.1103/PhysRevLett.101.107002

2010, Proc. Natl. Acad. Sci. U.S.A., 107, 15708, 10.1073/pnas.1007354107

1991, J. Chem. Phys., 95, 2036, 10.1063/1.461002

1994, Phys. Rev. B, 50, 5865, 10.1103/PhysRevB.50.5865

1996, Phys. Rev. B, 54, R717, 10.1103/PhysRevB.54.R717

1997, Phys. Rev. Lett., 79, 1082, 10.1103/PhysRevLett.79.1082

1989, J. Phys. Chem., 93, 7495, 10.1021/j100358a046

1990, Z. Kristallogr., 193, 1, 10.1524/zkri.1990.193.1-2.1

1998, Phys. Rev. B, 57, 2651, 10.1103/PhysRevB.57.2651

1998, Phys. Rev. B, 57, 5699, 10.1103/PhysRevB.57.5699

1999, Phys. Rev. Lett., 83, 2218, 10.1103/PhysRevLett.83.2218

2001, Phys. Rev. B, 64, 104103, 10.1103/PhysRevB.64.104103

2010, J. Chem. Phys., 132, 164506, 10.1063/1.3392673

2000, Phys. Rev. Lett., 85, 1254, 10.1103/PhysRevLett.85.1254

2013, Phys. Rev. Lett., 110, 245701, 10.1103/PhysRevLett.110.245701

2012, Comput. Phys. Commun., 183, 2063, 10.1016/j.cpc.2012.05.008

2010, Phys. Rev. B, 82, 094116, 10.1103/PhysRevB.82.094116

2011, Phys. Rev. Lett., 106, 015503, 10.1103/PhysRevLett.106.015503

2011, Phys. Rev. Lett., 106, 145501, 10.1103/PhysRevLett.106.145501

2013, Phys. Rev. Lett., 110, 136403, 10.1103/PhysRevLett.110.136403

1996, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

1999, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758

2006, J. Chem. Phys., 125, 224106, 10.1063/1.2404663

2003, J. Chem. Phys., 118, 8207, 10.1063/1.1564060

2005, J. Chem. Phys., 123, 174101, 10.1063/1.2085170

2005, Z. Kristallogr., 220, 574, 10.1524/zkri.220.5.574.65062

See supplementary material at http://dx.doi.org/10.1063/1.4874158 for the calculated structure parameters, electron localization functions, phonon dispersion curves, and electronic band structures.

2002, Rev. Sci. Instrum., 73, 2355, 10.1063/1.1480455

1997, Angew. Chem., Int. Ed., 36, 1788, 10.1002/anie.199717881

1972, Phys. Rev. B, 6, 2577, 10.1103/PhysRevB.6.2577

1975, Phys. Rev. B, 12, 905, 10.1103/PhysRevB.12.905

2004, Phys. Rev. Lett., 92, 187002, 10.1103/PhysRevLett.92.187002

1990, J. Chem. Phys., 92, 5397, 10.1063/1.458517

1987, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 43, 2260, 10.1107/S0108270187088152

2004, Phys. Rev. B, 70, 134106, 10.1103/PhysRevB.70.134106

2005, Phys. Rev. B, 71, 214104, 10.1103/PhysRevB.71.214104

2007, Nat. Phys., 3, 473, 10.1038/nphys625