The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS)
Tóm tắt
Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder affecting 5-10% of women in reproductive age that is characterized by hyperandrogenism, oligo- or anovulation and infertility. However the pathophysiology of PCOS still remains unknown. The mammalian target of rapamycin (mTOR) is a central component that regulates various processes including cell growth, proliferation, metabolism, and angiogenesis. mTOR signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. mTOR functions as two complexes, mTOR complex 1 and 2. Therefore, we hypothesized that mTORC1 and/or 2 may have important role in proliferation of theca and granulosa cells in PCOS. In the present study, we sought to determine the mTOR signaling pathway in PCOS mouse ovary. We designed 3 groups: Control (C, no treatment), PCOS (P, The injection of DHEA (6 mg/100 g BW in 0.1 ml of sesame oil) (s.c) for 20 consecutive days), Vehicle (V, daily (s.c) sesame oil alone injection). Our results showed that mTORC1 and mTORC2-mediated signaling may play a role in PCOS mouse ovary. These findings provide evidence that mTORC1 and mTORC2 may have responsibility in increased ovarian follicular cell proliferation and growth in PCOS. Consequently, these results suggest that the mTOR signaling pathways (mTORC1 and mTORC 2) may create new clinical strategies to optimize developmental competence of PCOS should target correction of the entire follicle growth, oocyte development process and anovulatory infertility in PCOS.
Tài liệu tham khảo
Abbott DH, Dumesic DA, Franks S: Developmental origin of polycystic ovary syndrome - a hypothesis. J Endocrinol 2002, 174: 1–5. 10.1677/joe.0.1740001
Voutilainen R, Franks S, Mason HD, Martikainen H: Expression of insulin-like growth factor (IGF), IGF-binding protein, and IGF receptor messenger ribonucleic acids in normal and polycystic ovaries. J Clin Endocrinol Metab 1996, 81: 1003–1008. 10.1210/jc.81.3.1003
Burger CW, Korsen T, van Kessel H, van Dop PA, Caron FJ, Schoemaker J: Pulsatile luteinizing hormone patterns in the follicular phase of the menstrual cycle, polycystic ovarian disease (PCOD) and non-PCOD secondary amenorrhea. J Clin Endocrinol Metab 1985, 61: 1126–1132. 10.1210/jcem-61-6-1126
Berga SL, Yen SS: Opioidergic regulation of LH pulsatility in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 1989, 30: 177–184. 10.1111/j.1365-2265.1989.tb03739.x
Ehrmann DA: Polycystic ovary syndrome. N Engl J Med 2005, 352: 1223–1236. 10.1056/NEJMra041536
Chang RJ: A practical approach to the diagnosis of polycystic ovary syndrome. Am J Obstet Gynecol 2004, 191: 713–717. 10.1016/j.ajog.2004.04.045
Dunaif A, Graf M, Mandeli J, Laumas V, Dobrjansky A: Characterization of groups of hyperandrogenic women with acanthosis nigricans, impaired glucose tolerance, and/or hyperinsulinemia. J Clin Endocrinol Metab 1987, 65: 499–507. 10.1210/jcem-65-3-499
Adams J, Polson DW, Franks S: Prevalence of polycystic ovaries in women with anovulation and idiopathic hirsutism. Br Med J (Clin Res Ed) 1986, 293: 355–359. 10.1136/bmj.293.6543.355
Franks S, Gharani N, Waterworth D, Batty S, White D, Williamson R, McCarthy M: The genetic basis of polycystic ovary syndrome. Hum Reprod 1997, 12: 2641–2648. 10.1093/humrep/12.12.2641
Kahsar-Miller M, Azziz R: The development of the polycystic ovary syndrome: family history as a risk factor. Trends Endocrinol Metab 1998, 9: 55–58. 10.1016/S1043-2760(98)00021-6
Escobar-Morreale HF, Luque-Ramirez M, San Millan JL: The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev 2005, 26: 251–282.
Belosi C, Selvaggi L, Apa R, Guido M, Romualdi D, Fulghesu AM, Lanzone A: Is the PCOS diagnosis solved by ESHRE/ASRM 2003 consensus or could it include ultrasound examination of the ovarian stroma? Hum Reprod 2006, 21: 3108–3115. 10.1093/humrep/del306
Sabatini ME, Guo L, Lynch MP, Doyle JO, Lee H, Rueda BR, Styer AK: Metformin therapy in a hyperandrogenic anovulatory mutant murine model with polycystic ovarian syndrome characteristics improves oocyte maturity during superovulation. J Ovarian Res 2011, 4: 8. 10.1186/1757-2215-4-8
Lee MT, Anderson E, Lee GY: Changes in ovarian morphology and serum hormones in the rat after treatment with dehydroepiandrosterone. Anat Rec 1991, 231: 185–192. 10.1002/ar.1092310206
Anderson E, Lee MT, Lee GY: Cystogenesis of the ovarian antral follicle of the rat: ultrastructural changes and hormonal profile following the administration of dehydroepiandrosterone. Anat Rec 1992, 234: 359–382. 10.1002/ar.1092340307
Luchetti CG, Solano ME, Sander V, Arcos ML, Gonzalez C, Di Girolamo G, Chiocchio S, Cremaschi G, Motta AB: Effects of dehydroepiandrosterone on ovarian cystogenesis and immune function. J Reprod Immunol 2004, 64: 59–74. 10.1016/j.jri.2004.04.002
Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell 2006, 124: 471–484. 10.1016/j.cell.2006.01.016
Chiang GG, Abraham RT: Targeting the mTOR signaling network in cancer. Trends Mol Med 2007, 13: 433–442. 10.1016/j.molmed.2007.08.001
Tsang CK, Qi H, Liu LF, Zheng XF: Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 2007, 12: 112–124. 10.1016/j.drudis.2006.12.008
Martin DE, Hall MN: The expanding TOR signaling network. Curr Opin Cell Biol 2005, 17: 158–166. 10.1016/j.ceb.2005.02.008
Schmelzle T, Hall MN: TOR, a central controller of cell growth. Cell 2000, 103: 253–262. 10.1016/S0092-8674(00)00117-3
Yang Q, Guan KL: Expanding mTOR signaling. Cell Res 2007, 17: 666–681. 10.1038/cr.2007.64
Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR: Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 2007, 405: 513–522. 10.1042/BJ20070540
Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, Arrieumerlou C, Hall MN: PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2007, 2: e1217. 10.1371/journal.pone.0001217
Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, Hegg JW, Bandhakavi S, Griffin TJ, Kim DH: PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem 2007, 282: 25604–25612. 10.1074/jbc.M704343200
Roa J, Garcia-Galiano D, Varela L, Sanchez-Garrido MA, Pineda R, Castellano JM, Ruiz-Pino F, Romero M, Aguilar E, Lopez M, Gaytan F, Dieguez C, Pinilla L, Tena-Sempere M: The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 2009, 150: 5016–5026. 10.1210/en.2009-0096
Yaba A, Bianchi V, Borini A, Johnson J: A putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulosa cells. Reprod Sci 2008, 15: 128–138. 10.1177/1933719107312037
Elia E, Sander V, Luchetti CG, Solano ME, Di Girolamo G, Gonzalez C, Motta AB: The mechanisms involved in the action of metformin in regulating ovarian function in hyperandrogenized mice. Mol Hum Reprod 2006, 12: 475–481. 10.1093/molehr/gal057
Sander V, Luchetti CG, Solano ME, Elia E, Di Girolamo G, Gonzalez C, Motta AB: Role of the N, N'-dimethylbiguanide metformin in the treatment of female prepuberal BALB/c mice hyperandrogenized with dehydroepiandrosterone. Reproduction 2006, 131: 591–602. 10.1530/rep.1.00941
Aragno M, Brignardello E, Tamagno E, Gatto V, Danni O, Boccuzzi G: Dehydroepiandrosterone administration prevents the oxidative damage induced by acute hyperglycemia in rats. J Endocrinol 1997, 155: 233–240. 10.1677/joe.0.1550233
Aragno M, Mastrocola R, Brignardello E, Catalano M, Robino G, Manti R, Parola M, Danni O, Boccuzzi G: Dehydroepiandrosterone modulates nuclear factor-kappaB activation in hippocampus of diabetic rats. Endocrinology 2002, 143: 3250–3258. 10.1210/en.2002-220182
Guzeloglu-Kayisli O, Kayisli UA, Amankulor NM, Voorhees JR, Gokce O, DiLuna ML, Laurans MS, Luleci G, Gunel M: Krev1 interaction trapped-1/cerebral cavernous malformation-1 protein expression during early angiogenesis. J Neurosurg 2004, 100: 481–487.
Hughesdon PE: Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called "hyperthecosis". Obstet Gynecol Surv 1982, 37: 59–77. 10.1097/00006254-198202000-00001
Jonard S, Dewailly D: The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum Reprod Update 2004,10(2):107–117. 10.1093/humupd/dmh010
Okutsu Y, Itoh MT, Takahashi N, Ishizuka B: Exogenous androstenedione induces formation of follicular cysts and premature luteinization of granulosa cells in the ovary. Fertil Steril 2010, 93: 927–935. 10.1016/j.fertnstert.2008.10.064
Franks S, Mason H, Willis D: Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 2000, 163: 49–52. 10.1016/S0303-7207(99)00239-7
Mendonca HC, Montenegro RM Jr, Foss MC, de Sa MF S, Ferriani RA: Positive correlation of serum leptin with estradiol levels in patients with polycystic ovary syndrome. Braz J Med Biol Res 2004, 37: 729–736. 10.1590/S0100-879X2004000500015
Doi SA, Al-Zaid M, Towers PA, Scott CJ, Al-Shoumer KA: Irregular cycles and steroid hormones in polycystic ovary syndrome. Hum Reprod 2005, 20: 2402–2408. 10.1093/humrep/dei093
Franks S, Stark J, Hardy K: Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update 2008,14(4):367–378. Epub 2008 May 22. Review. Erratum in: Hum Reprod Update. 2008 Sep-Oct;14(5):539. PMID: 18499708 [PubMed - indexed for MEDLINE 10.1093/humupd/dmn015
Orisaka M, Tajima K, Tsang BK, Kotsuji F: Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res 2009,2(1):9. PMID: 19589134 [PubMed] 10.1186/1757-2215-2-9
Dann SG, Thomas G: The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett 2006, 580: 2821–2829. 10.1016/j.febslet.2006.04.068
Harris TE, Lawrence JC Jr: TOR signaling. Sci STKE 2003, 2003: re15.
Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev 2004, 18: 1926–1945. 10.1101/gad.1212704
Inoki K, Ouyang H, Li Y, Guan KL: Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005, 69: 79–100. 10.1128/MMBR.69.1.79-100.2005
Kwiatkowski DJ, Manning BD: Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 2005, 14 Spec No. 2: R251-R258.
Sarbassov DD, Ali SM, Sabatini DM: Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005, 17: 596–603. 10.1016/j.ceb.2005.09.009
Bachmann RA, Kim JH, Wu AL, Park IH, Chen J: A nuclear transport signal in mammalian target of rapamycin is critical for its cytoplasmic signaling to S6 kinase 1. J Biol Chem 2006, 281: 7357–7363. 10.1074/jbc.M512218200
Alam H, Maizels ET, Park Y, Ghaey S, Feiger ZJ, Chandel NS, Hunzicker-Dunn M: Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem 2004, 279: 19431–19440. 10.1074/jbc.M401235200
Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL: Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 2008, 27: 1919–1931. 10.1038/emboj.2008.119
van der Spuy ZM, Dyer SJ: The pathogenesis of infertility and early pregnancy loss in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 2004, 18: 755–771.