The mechanism of lead-induced mitochondrial Ca2+ efflux

Journal of bioenergetics - Tập 19 - Trang 285-295 - 1987
Edmundo Chávez1, David Jay1, Concepción Bravo1
1Departamento de Bioquímica, Instituto Nacional de Cardiología, “Ignacio Chávez,”, México, México

Tóm tắt

Addition of Pb2+ to rat kidney mitochondria is followed by induction of several reactions: inhibition of Ca2+ uptake, collapse of the transmembrane potential, oxidation of pyridine nucleotides, and a fast release of accumulated Ca2+. When the incubation media are supplemented with ruthenium red, the effect of Pb2+ on NAD(P)H oxidation, membrane ΔΨ, and Ca2+ release are not prevented if malate-glutamate are the oxidizing substrates; however, the latter two lead-induced reactions are prevented by ruthenium red if succinate is the electron donor. It is proposed that in mitochondria oxidizing NAD-dependent substrates, Pb2+ induces Ca2+ release by promoting NAD(P)H oxidation and a parallel drop in ΔΨ due to its binding to thiol groups, located in the cytosol side of the inner membrane. In addition, it is proposed that with succinate as substrate, the Ca2+-releasing effect of lead is due to the collapse of the transmembrane potential as a consequence of the uptake of Pb2+ through the calcium uniporter, since such effect is ruthenium red sensitive.

Tài liệu tham khảo

Akerman, K. E. O., and Wikström, M. F. K. (1976).FEBS Lett. 68, 191–197. Beatrice, M. C., Palmer, J. W., and Pfeiffer, D. R. (1980).J. Biol. Chem. 255, 8663–8671. Beatrice, M. C., Stiers, D. L., and Pfeiffer, D. R. (1984).J. Biol. Chem. 259, 1279–1287. Brierley, G. P. (1978). InThe Molecular Biology of Membranes (Fleischer, S., Hatefi, Y., MacLenna, D. H., and Tzagoloff, A. eds.), Plenum Press, New York, pp. 295–308. Chávez, E., Jung, D. W., and Brierley, G. P. (1977).Arch. Biochem. Biophys. 183, 460–470. Chávez, E., Briones, R., Michel, B., Bravo, C., and Jay, D. (1985).Arch. Biochem. Biophys. 242, 493–497. Jung, D. W., and Brierley, G. P. (1982).Biochem. Biophys. Res. Commun. 106, 1372–1377. Jung, D. W., and Brierley, G. P. (1984).J. Biol. Chem. 259, 6904–6911. Jung, D. W., Chávez, E., and Brierley, G. P. (1977).Arch. Biochem. Biophys. 183, 452–459. Jurkowitz, M. S., Geisbuhler, T., Jung, D. W., and Brierley, G. P. (1983).Arch. Biochem. Biophys. 223, 120–128. Kapoor, S. C., and van Rossum, G. D. V. (1984).Biochem. Pharmacol 33, 1771–1778. Lehninger, A. L. (1971).Biochem. Biophys. Res. Commun. 42, 312–318. Lehninger, A. L., Vercesi, A. E., and Bababumi, E. A. (1978).Proc. Natl. Acad. Sci. USA 75, 1690–1694. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randal, R. J. (1951).J. Biol. Chem. 193, 265–275. Mela, L. (1969).Biochemistry 8, 2481–2486. Nicholls, D., and Akerman, K. (1982).Biochim. Biophys. Acta 683, 57–88. Palmer, J. W., and Pfeiffer, D. R. (1981).J. Biol. Chem. 256, 6742–6750. Parr, D. R., and Harris, E. J. (1976).Biochem. J. 158, 289–297. Pfeiffer, D. R., Schmid, P. C., Beatrice, M. C., and Schmid, H. H. O. (1979).J. Biol. Chem. 254, 11485–11494. Scott, K. M., Hwang, K. M., Jurkowitz, M., and Brierley, G. P. (1971).Arch. Biochem. Biophys. 147, 557–567. Siliprandi, D., Rugolo, M., Zoccarato, F., Toninello, A., and Siliprandi, N. (1979).Biochem. Biophys. Res. Commun. 88, 388–394. Valle, B. L., and Ulmer, D. D. (1972).Annu. Rev. Biochem. 41, 91–128. Vercesi, A. E. (1984).Biochem. Biophys. Res. Commun. 119, 305–310.