The mechanical behavior of as received and retrieved nickel titanium orthodontic archwires
Tóm tắt
The aim of this study is to investigate and compare the characteristics of as received and retrieved NiTi archwires at a constant temperature by plotting their load/deflection graphs and quantifying three parameters describing the discharge plateau phase. Two hundred four NiTi archwires, traditional and heat-activated, of various cross sections, were obtained from 5 different manufacturers. Specimens prepared from the selected wires were subjected to a three-point bending test where 92 were retrieved through an in vivo retrieval protocol (crowding group C1 and group C2), 56 went through an in vitro retrieval protocol, and 56 were as received. The in vitro retrieval protocol was performed by a gear motor connected to a stainless steel support that performed fatigue cycles to the bent wires in artificial saliva. The load/deflection graphs of as received and retrieved wires were described through three parameters and the results were analyzed with classification and regression trees (CART) and analysis of variance (ANOVA). Statistically significant differences between as received and retrieved wires were found only for the parameter plateau slope which represents the constancy of force expressed by the wire. The aging of NiTi archwires influences the force constancy expressed. The behavior of the wires changes depending on the size, brand, and type of retrieval protocol. In terms of performance, the poorest is represented by all wires retrieved in vitro and in vivo group C2 (moderate to severe crowding).
Tài liệu tham khảo
Berzins DW, Roberts HW. Phase transformation changes in thermocycled nickel-titanium orthodontic wires. Dent Mater. 2010;26:666–74.
Brantley WA, Eliades T. Orthodontic materials scientific and clinical aspects. New York: Thieme; 2001.
Meling TR, Ødegaard J. The effect of short-term temperature changes on superelastic nichel-titanium archwires activated in orthodontic bending. Am J Orthod Dentofac Orthop. 2001;119:263–73.
Lombardo L, Toni G, Stefanoni F, Mollica F, Siciliani G. The effect of temperature on the mechanical behaviour of nickel-titanium orthodontic initial archwires. Angle Orthod. 2013;83:298–305.
Grımsdottir MR, Hensten-Pettersen A. Surface analysis of nickel-titanium archwires used in vivo. Dent Mater. 1997;13:163–7.
Eliades T, Eliades G, Athanasiou AE, Bradley TG. Surface characterization of retrieved NiTi orthodontic archwires. Eur J Orthod. 2000;22:317–26.
Oshida Y, Sachdeva RCL, Miyazaki S. Micro-analytical characterization and surface modification of NiTi orthodontic archwires. Biomed Mater Eng. 1992;2:51–69.
Bernabé E, Flores-Mir C. Estimating arch length discrepancy through Little’s irregularity index for epidemiological use. Eur J Orthod. 2006;28:269–73.
Lombardo L, Marafioti M, Stefanoni F, Mollica F, Siciliani G. Load deflection characteristics and force level of nickel titanium initial archwires. Angle Orthod. 2012;82:507–21.
Nelsen IL, Wolcott RB, Paffenbarger GC. Fluid exchange at the margins of dental restorations. J Am Dent Assoc. 1952;44:288–95.
Moore RJ, Watts JTF, Hood JAA, Burritt DJ. Intra-oral temperature variation over 24 hours. Eur J Orthod. 1999;21:249–61.
Bourauel C, Scharold W, Jäger A, Eliades T. Fatigue failure of as-received and retrieved NiTi orthodontic archwires. Dent Mater. 2008;24:1095–101.
Van Aken CA, Pallav P, Kleverlaan CJ, Juitert RB, Prhal-Anderssen B, Feilzer AJ. Effect of long-term repeated deflections on fatigue preloaded superelastic nickel-titanium archwires. Am J Orthod Dentofac Orthop. 2008;133:269–76.
Tonner M, Waters NE. The characteristics of super-elastic Ni-Ti wires in three- point bending. Part I: the effect of temperature. Eur J Orthod. 1994;16:409–19.
Tonner RIM, Waters NE. The characteristics of super-elastic NiTi wires in three-point bending. Part 2: intra-batch variation. Eur J Orthod. 1994;16:421–5.
Kapila S, Sachdeva R. Mechanical properties and clinical applications of orthodontic wires. Am J Orthod Dentofac Orthop. 1989;96:100–9.
Kasuya S, Nagasaka S, Hanyuda A, Ishimura S, Hirashita A. The effect of ligation on the load-deflection characteristics of nickel-titanium orthodontic wire. Eur J Orthod. 2007;29:578–82.
Wilkinson PD, Dysart PS, Hood JAA, Herbison P. Load-deflection characteristics of superelastic nickel-titanium orthodontic wires. Am J Orthod Dentofac Orthop. 2002;121:483–95.
Nakano H, Satoh K, Norris R, Jin T, Kamegai T, Ishikawa F, Katsura H. Mechanical properties of several nichel-titanium alloy wires in three-point bending tests. Am J Orthod Dentofac Orthop. 1999;115:390–5.
Zeileis A, Hothorn T, Hornik K. Model-based recursive partitioning. J Comput Graph Stat. 2008;17(2):492–514.
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015. https://www.R-project.org/
Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–3428.
Iijima M, Ohno H, Kawashima I, Endo K, Mizoguchi I. Mechanical behaviour at different temperatures and stresses for superelastic nickel-titanium orthodontic wires having different transformation temperatures. Dent Mater. 2002;18:88–93.
Bartzela TN, Senn C, Wichelhaus A. Load-deflection of Superelastic nickel-titanium wires. Angle Orthod. 2007;77:991–8.
Zinelis S, Eliades T, Pandis N, Eliades G, Bourauel C. Why do nickel-titanium archwires fracture intraorally? Fractographic analysis and failure mechanism of in vivo fractured wires. Am J Orthod Dentofac Orthop. 2007;132:84–90.
Ernst CP, Canbek K, Euler T, Willershausen B. In vivo validation of the historical in vitro thermocycling temperature range for dental materials testing. Clin Oral Investig. 2004;8:130–8.