The $${{\,\mathrm{\mathcal {X}}\,}}$$ -series of a p-group and Complements of Abelian Subgroups
Tóm tắt
Let G be a finite p-group. We denote by
$${{\,\mathrm{\mathcal {X}}\,}}_i(G)$$
the intersection of all subgroups of G having index
$$p^i$$
in G. In this paper, the newly introduced series
$$\{{{\,\mathrm{\mathcal {X}}\,}}_i(G)\}_i$$
is investigated and a number of results concerning its behaviour are proved. As an application of these results, we show that if an abelian subgroup A of G intersects each one of the subgroups
$${{\,\mathrm{\mathcal {X}}\,}}_i(G)$$
at
$${{\,\mathrm{\mathcal {X}}\,}}_i(A)$$
, then A has a complement in G. Conversely if an arbitrary subgroup H of G has a normal complement, then
$${{\,\mathrm{\mathcal {X}}\,}}_i(H) = {{\,\mathrm{\mathcal {X}}\,}}_i(G) \cap H$$
.
Tài liệu tham khảo
Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pac. J. Math. 13, 775–1029 (1963)
Fuchs, L.: Abelian Groups. Springer Monogr. Math., Springer, Cham (2015)
Gaschütz, W.: Zur Erweiterungstheorie der endlichen Gruppen. J. Reine Angew. Math. 190, 93–107 (1952)
Gaschütz, W.: Über die \(\Phi \)-Untergruppe endlicher Gruppen. Math. Z. 58, 160–170 (1953)
Huppert, B.: Endliche Gruppen I. Nachdr. d. 1. Aufl. (1979)
Kirtland, J.: Complementation of Normal Subgroups. In Finite Groups. De Gruyter, Berlin (2017)
Leedham-Green, C.R., McKay, S.: The Structure of Groups of Prime Power Order. London Mathematical Society Monograph, New Series, vol. 27. Oxford University Press, Oxford (2002)
Sambale, B.: On the converse of Gaschütz’ complement theorem. J. Group Theory (to appear) (2023)
The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.1 (2021)