The $${{\,\mathrm{\mathcal {X}}\,}}$$ -series of a p-group and Complements of Abelian Subgroups

Results in Mathematics - Tập 78 - Trang 1-16 - 2023
Stefanos Aivazidis1, Maria Loukaki1
1Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece

Tóm tắt

Let G be a finite p-group. We denote by $${{\,\mathrm{\mathcal {X}}\,}}_i(G)$$ the intersection of all subgroups of G having index $$p^i$$ in G. In this paper, the newly introduced series $$\{{{\,\mathrm{\mathcal {X}}\,}}_i(G)\}_i$$ is investigated and a number of results concerning its behaviour are proved. As an application of these results, we show that if an abelian subgroup A of G intersects each one of the subgroups $${{\,\mathrm{\mathcal {X}}\,}}_i(G)$$ at $${{\,\mathrm{\mathcal {X}}\,}}_i(A)$$ , then A has a complement in G. Conversely if an arbitrary subgroup H of G has a normal complement, then $${{\,\mathrm{\mathcal {X}}\,}}_i(H) = {{\,\mathrm{\mathcal {X}}\,}}_i(G) \cap H$$ .

Tài liệu tham khảo

Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pac. J. Math. 13, 775–1029 (1963) Fuchs, L.: Abelian Groups. Springer Monogr. Math., Springer, Cham (2015) Gaschütz, W.: Zur Erweiterungstheorie der endlichen Gruppen. J. Reine Angew. Math. 190, 93–107 (1952) Gaschütz, W.: Über die \(\Phi \)-Untergruppe endlicher Gruppen. Math. Z. 58, 160–170 (1953) Huppert, B.: Endliche Gruppen I. Nachdr. d. 1. Aufl. (1979) Kirtland, J.: Complementation of Normal Subgroups. In Finite Groups. De Gruyter, Berlin (2017) Leedham-Green, C.R., McKay, S.: The Structure of Groups of Prime Power Order. London Mathematical Society Monograph, New Series, vol. 27. Oxford University Press, Oxford (2002) Sambale, B.: On the converse of Gaschütz’ complement theorem. J. Group Theory (to appear) (2023) The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.1 (2021)