The linear-quadratic formula and progress in fractionated radiotherapy

British Journal of Radiology - Tập 62 Số 740 - Trang 679-694 - 1989
J. F. Fowler1,2
1Departments of Human Oncology and Medical Physics , K4/336 , , Wisconsin 53792, USA
2University of Wisconsin Clinical Cancer Center, Madison , K4/336 , , Wisconsin 53792, USA

Tóm tắt

Clinical gains have been reported from the use of nonstandard fractionation schedules planned with a radiobiological basis. Hyperfractionation provides the leading example, as described below, with accelerated fractionation being developed more recently. Although examples of almost every kind of fractionated schedule can be found in the literature over the past 90 years, it is only within the last decade that the biological factors concerning overall time and delayed proliferation after irradiation, and the effect of dose per fraction, have been understood. Both these factors operate differently on late- and early-reacting tissues, because cell proliferation in late-reacting tissues is slow or absent, but early reacting tissues and tumours depend upon cells that proliferate rapidly. This basic knowledge is still diffusing through the radiotherapy community and I hope this review will help the diffusion process. The biological factors concerning fractionation seem to apply to the majority of tissues and tumours, so that new schedules can be planned that are effective in practice.

Attempts to deal with hypoxic cells in tumours or to use high-linear-energy-transfer (LET) radiation have been less generally successful, probably because in those strategies we need to identify subpopulations that are smaller. Tumours that are resistant to conventional radiotherapy because they contain hypoxic cells and do not reoxygenate cannot be identifed yet.

Từ khóa


Tài liệu tham khảo

10.1259/0007-1285-47-553-44

BACLESSE F., Progress in Radiation Therapy (Grune & Stratton, 128

BARENDSEN G. W., 1982, Physics, 8, 1981

10.1002/cyto.990060618

10.1016/0167-8140(88)90205-8

10.1016/S0167-8140(84)80076-6

10.3109/02841868809090330

BROCK W. A., 1986, Radiation Research, 104, S290, 10.2307/3576660

COUTARD H., 1932, American Journal of Roentgenology, 28, 313

10.2307/3576798

10.1016/S0167-8140(84)80074-2

10.1259/0007-1285-46-545-381

DENEKAMP J., 1976, Cell and Tissue Kinetics, 9, 19

10.2307/3574407

10.1016/S0009-9260(69)80043-7

FISHER D. R., 1986, British Journal of Cancer, 53, 298

FOWLER J. F., 1984, The Biological Basis of Radiotherapy, ed. by G. G. Steel, 181

3rd International Symposium on Time Dose

FOWLER, J. F., WHITSED, C. A. & HALFYARD, A., 1987. Is there a loss of repair in multifraction irradiation of mouse Iung? Gray Laboratory Annual Report, p.50 (Abstract).

10.1080/09553008014550571

HEGAZY M. A., 1973, Cell and Tissue Kinetics, 6, 587

HORIOT J. C, 1988, Physics, 15, 178

10.1080/09553008514552311

10.2307/3577233

10.1016/S0009-9260(71)80044-2

10.1016/S0167-8140(85)80055-4

10.1016/S0167-8140(86)80106-2

10.1259/0007-1285-44-518-91

MACIEJEWSKI B., 1983, Physics, 9, 321

MALAISE E. P., 1988, Proceedings of the 3rd International Symposium on Time Dose and Fractionation

MEYER J. S., 1981, Pathology Annual, 16, (Part 2), 53

MITCHELL J. S., Studies in Radiotherapeutics

10.1259/0007-1285-46-547-529

OVERGAARD M., 1985, Physics, 11, 1225

10.3109/02841868809090334

10.1259/0007-1285-58-695-1097

Suppl. VII, 320

PARSONS J. T., 1980, Physics, 6, 1645

PARSONS J. T., 1988, Physics, 14, 649

PIPARD G., 7th Annual Meeting ofESTRO, Den Haag, 233

10.3109/02841868809090339

PETERS L. J., Megavoltage Radiotherapy 1937-1987, British Journal of Radiology, Suppl. 22, 9

SAUNDERS M., Frontiers of Radiation Therapy and Oncology, 22, 99

SHELINE G. E., 1980, Physics, 6, 1215

10.1259/0007-1285-51-605-357

STEEL, G. G., 1977. Growth Kinetics of Tumours (Clarendon Press, Oxford), pp.191, 202.

STEWART F. A., 1980, Cell and Tissue Kinetics, 13, 75

10.1016/S0167-8140(84)80049-3

10.2307/3576248

10.2307/3574609

SUIT H. D., 1988, Proceedings of the 3rd International Symposium on Time Dose and Fractionation

10.1259/0007-1285-57-679-617

10.1080/09553008814551461

THAMES, H. D. & HENDRY, J. H., 1987. Fractionation in Radiotherapy (Taylor & Francis, London), pp.297.

THAMES M. D., 1983, Physics, 9, 127

10.1080/09553008514553221

10.1259/0007-1285-53-635-1071

THAMES H. D., 1982, Physics, 8, 219

THOMAS F., 1988, Physics, 15, 1097

TRAVIS E. L., 1983, Physics, 9, 691

TRAVIS E. L., 1987, Physics, 13, 283

10.1016/S0167-8140(85)80002-5

10.3109/02841868809090328

TURESSON I., 1984, Physics, 10, 593

VAN RONGEN E ., 1988, Physics, 15, 1161

WANG C. C, 1988, Physics, 14, 1143

10.1002/1097-0142(197506)35:6<1558::AID-CNCR2820350613>3.0.CO;2-7

WEST C, 1988, Proceedings of the 3rd International Symposium on Time Dose and Fractionation

10.1259/0007-1285-61-728-700-b

10.1016/S0167-8140(84)80024-9

WILLIAMS M. V., 1985, Physics, 11, 87

10.1038/bjc.1988.234

WITHERS H. R., Progress in Radio-Oncology IV, ed. by K. H. Karcher, H. D. Kogelnik, B. Stadler & T. Szepesi (International Club for Radio-Oncology, 181

WITHERS H. R., 1976, Physics, 4, 595

WITHERS H. R., Progress in Radio-Oncology, 287

10.3109/02841868809090333