The laboratory microwave spectrum of the cyanide radical in its <i>X</i> 2Σ+ ground state

Journal of Chemical Physics - Tập 67 Số 9 - Trang 3956-3964 - 1977
T. A. Dixon1, R. Claude Woods1
1Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Tóm tắt

The microwave absorption spectrum of the CN molecule in the v=0 and v=1 vibrational states of the electronic ground state has been obtained in glow discharges in nitrogen–cyanogen mixtures at room temperature. Zeeman modulation is used for detection of the signal, and the microwave source is phase locked and digitally programmed by a computer. For each vibrational state the frequencies of the seven strongest hyperfine components of the N=0→1 rotational transition have been extracted from a careful regression analysis of the complex line shapes observed in the digitized spectral data. For the v=0 state the resulting rest frequencies and molecular parameters are in good agreement with, but more precise and accurate than, the values obtained from earlier radioastronomical studies. For the excited vibrational state the present work provides the first determination of the hyperfine parameters. The precision of the results for both states is sufficient to give a reliable measure of the variation of the spin–rotation constant (γ) and the hyperfine constants (b, c, and eQq) with vibrational quantum number.

Từ khóa


Tài liệu tham khảo

1965, Nuovo Cimento, 39, 519, 10.1007/BF02735821

1961, J. Mol. Spectrosc., 7, 194, 10.1016/0022-2852(61)90352-6

1970, J. Chem. Phys., 52, 197, 10.1063/1.1672665

1962, Phys. Rev., 128, 231, 10.1103/PhysRev.128.231

1962, Phys. Rev. Lett., 9, 345, 10.1103/PhysRevLett.9.345

1964, Phys. Rev., 136, 1566

1964, Phys. Rev., 136, 1571, 10.1103/PhysRev.136.A1571

1969, Phys. Rev., 178, 1, 10.1103/PhysRev.178.1

1969, J. Chem. Phys., 50, 2181, 10.1063/1.1671348

1972, J. Mol. Spectrosc., 44, 219, 10.1016/0022-2852(72)90101-4

1973, J. Chem. Phys., 58, 3547, 10.1063/1.1679698

1972, J. Chem. Phys., 57, 5059, 10.1063/1.1678189

1973, J. Chem. Phys., 59, 2387, 10.1063/1.1680348

1968, Can. J. Phys., 46, 2815, 10.1139/p68-652

1972, J. Chem. Phys., 57, 4694, 10.1063/1.1678138

1975, Astrophys. J., 196, 883, 10.1086/153480

1970, Astrophys. J. Lett., 161, 87, 10.1086/150514

1974, Phys. Rev. Lett., 32, 701, 10.1103/PhysRevLett.32.701

1975, Astrophys. J., 198, 71, 10.1086/153577

1938, J. Chem. Phys., 6, 294

1940, J. Chem. Phys., 8, 79, 10.1063/1.1750572

1973, Rev. Sci. Instrum., 44, 282, 10.1063/1.1686107

1973, Rev. Sci. Instrum., 44, 274, 10.1063/1.1686106

1974, Rev. Sci. Instrum., 45, 1122, 10.1063/1.1686824

1975, Phys. Rev. Lett., 34, 61, 10.1103/PhysRevLett.34.61

1975, Phys. Rev. Lett., 35, 1269, 10.1103/PhysRevLett.35.1269

1976, Astrophys. J. Lett., 204, L143, 10.1086/182074

1976, Astrophys. J. Lett., 205, L101, 10.1086/182099

1952, Phys. Rev., 88, 1337, 10.1103/PhysRev.88.1337

1951, Rev. Mod. Phys., 23, 213, 10.1103/RevModPhys.23.213

1966, J. Chem. Phys., 45, 4214, 10.1063/1.1727481

1973, J. Chem. Phys., 58, 4625, 10.1063/1.1679028

1964, Phys. Rev., 136, 1224

1969, Phys. Rev., 187, 58, 10.1103/PhysRev.187.58

1971, J. Chem. Phys., 55, 232, 10.1063/1.1675513

1975, Astrophys. J. Lett., 201, L25, 10.1086/181932

1969, Phys. Rev. Lett., 23, 1476, 10.1103/PhysRevLett.23.1476

1960, Proc. R. Soc. (London) Ser. A, 259, 100

1972, Phys. Lett. A, 38, 485

1929, Phys. Rev., 33, 467, 10.1103/PhysRev.33.467

1931, Phys. Rev., 38, 87, 10.1103/PhysRev.38.87