The joint distribution of Parisian and hitting times of Brownian motion with application to Parisian option pricing

Finance and Stochastics - Tập 20 - Trang 773-804 - 2016
Angelos Dassios1, You You Zhang1
1Department of Statistics, London School of Economics, London, UK

Tóm tắt

We study the joint law of Parisian time and hitting time of a drifted Brownian motion by using a three-state semi-Markov model, obtained through perturbation. We obtain a martingale to which we can apply the optional sampling theorem and derive the double Laplace transform. This general result is applied to address problems in option pricing. We introduce a new option related to Parisian options, being triggered when the age of an excursion exceeds a certain time or/and a barrier is hit. We obtain an explicit expression for the Laplace transform of its fair price.

Tài liệu tham khảo

Abate, J., Whitt, W.: Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7, 36–43 (1995) Anderluh, J.H.M., van der Weide, J.: Double sided Parisian option pricing. Finance Stoch. 13, 205–238 (2009) Avellaneda, M., Wu, L.: Pricing Parisian-style options with a lattice method. Int. J. Theor. Appl. Finance 2, 1–16 (1999) Bernard, C., Le Courtois, O., Quittard-Pinon, F.: A new procedure for pricing Parisian options. Journal of Derivatives 12(4), 45–53 (2005) Borodin, A.N., Salminen, P.: Handbook of Brownian Motion: Facts and Formulae. Birkhäuser, Basel (2002) Cai, N., Chen, N., Wan, X.: Occupation times of jump-diffusion processes with double exponential jumps and the pricing of options. Math. Oper. Res. 35, 412–437 (2010) Chesney, M., Gauthier, L.: American Parisian options. Finance Stoch. 10, 475–506 (2006) Chesney, M., Jeanblanc-Picqué, M., Yor, M.: Brownian excursions and Parisian barrier options. Ann. Appl. Probab. 29, 165–184 (1997) Chung, K.L.: Excursions in Brownian motion. Ark. Mat. 14, 155–177 (1976) Dassios, A., Wu, S.: Perturbed Brownian motion and its application to Parisian option pricing. Finance Stoch. 14, 473–494 (2009) Dassios, A., Wu, S.: Brownian excursions in a corridor and related Parisian options (2011). http://stats.lse.ac.uk/angelos/docs/corridor.pdf Dassios, A., Wu, S.: Double-barrier Parisian options. J. Appl. Probab. 48, 1–20 (2011) Dassios, A., Wu, S.: Semi-Markov model for excursions and occupation time of Markov processes (2011). http://stats.lse.ac.uk/angelos/docs/semi.pdf Gauthier, L.: Excursions height- and length-related stopping times, and application to finance. Adv. Appl. Probab. 34, 846–868 (2002) Gauthier, L.: Options réelles et options exotiques, une approche probabiliste. PhD thesis (2003). Available online at https://tel.archives-ouvertes.fr/tel-00002076/ Haber, R.J., Schönbucher, P., Wilmott, P.: Pricing Parisian options. J. Deriv. 6(3), 71–79 (1999) Labart, C., Lelong, J.: Pricing Parisian options using Laplace transforms. Bank. Mark. Invest. 99, 1–24 (2009) Lau, K.W., Kwok, Y.K.: Anatomy of option features in convertible bonds. J. Futures Mark. 24, 513–532 (2004) Lim, J.W.: Parisian excursions of Brownian motion and their applications in mathematical finance. PhD thesis, The London School of Economics and Political Science (2013). Available online at http://etheses.lse.ac.uk/795/ Schröder, M.: On a Brownian excursion law, I: convolution representations (2013). arXiv:1303.5203 Schröder, M.: On three methods for explicit handling of convolutions as applied to Brownian excursions and Parisian barrier options. Q. J. Mech. Appl. Math. 67, 641–685 (2014) Zhang, H.: Occupation times, drawdowns, and drawups for one-dimensional regular diffusions. Adv. Appl. Probab. 47, 210–230 (2015)