The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature

Ecology Letters - Tập 13 Số 2 - Trang 184-193 - 2010
Shaun S. Killen1, David Atkinson2,3, Douglas S. Glazier4
1Station Méditerranéenne de l’Environnement Littoral, Institut des Sciences de l’Évolution de Montpellier, Université Montpellier II, Sète 34200, France
2National Center for Ecological Analysis and Synthesis, Santa Barbara, CA 93101, USA
3Population & Evolutionary Biology Division, School of Biological Sciences, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, UK
4Department of Biology, Juniata College, Huntingdon, PA 16652, USA

Tóm tắt

Ecology Letters (2010) 13: 184–193AbstractMetabolic energy fuels all biological processes, and therefore theories that explain the scaling of metabolic rate with body mass potentially have great predictive power in ecology. A new model, that could improve this predictive power, postulates that the metabolic scaling exponent (b) varies between 2/3 and 1, and is inversely related to the elevation of the intraspecific scaling relationship (metabolic level, L), which in turn varies systematically among species in response to various ecological factors. We test these predictions by examining the effects of lifestyle, swimming mode and temperature on intraspecific scaling of resting metabolic rate among 89 species of teleost fish. As predicted, b decreased as L increased with temperature, and with shifts in lifestyle from bathyal and benthic to benthopelagic to pelagic. This effect of lifestyle on b may be related to varying amounts of energetically expensive tissues associated with different capacities for swimming during predator–prey interactions.

Từ khóa


Tài liệu tham khảo

10.1186/1742-4682-1-13

10.1111/j.1365-2435.2008.01458.x

10.1098/rspb.2004.2861

10.1098/rstb.1997.0032

10.1126/science.8469974

Bohonak A.J., 2002, Software for Reduced Major Axis Regression, V.1.2

10.1111/j.0269-8463.2004.00817.x

10.1016/S0022-5193(05)80131-6

Breder C.M., 1926, The locomotion of fishes, Zoologica, 4, 159

10.1890/03-9000

10.1007/BF00002519

10.1016/S0169-5347(00)88957-0

10.1111/j.1365-2435.2007.01245.x

10.1046/j.1365-2656.1999.00337.x

Dewar H., 1994, Studies of tropical tuna swimming performance in a large water tunnel I. Energetics, J. Exp. Biol., 192, 13, 10.1242/jeb.192.1.13

10.1016/j.dsr.2006.10.007

Edgington E.S., 1995, Randomization Tests

Froese R.&Pauly D.(eds) (2008).FishBase. World Wide Web electronic publication.http://www.fishbase.org version (06/2008).

10.1017/S1464793105006834

10.1098/rspb.2008.0118

Glazier D.S., 2009, A unifying explanation for diverse metabolic scaling in animals and plants, Biol. Rev.

10.1007/s00360-009-0363-3

10.1016/j.cbpa.2009.03.020

Graham J.B., 2001, Tunas: Physiology, Ecology and Evolution, 79

Hemmingsen A.M., 1960, Energy metabolism as related to body size and respiratory surfaces, and its evolution, Rep. Steno Mem. Hosp. Nordisk Insulin Lab., 9, 1

10.1016/0034-5687(87)90099-5

10.3354/meps321255

10.1017/CBO9780511565403

10.1073/pnas.2334605100

10.1139/z90-092

10.1016/S1546-5098(08)60163-6

10.1111/j.1365-2435.2006.01070.x

10.1073/pnas.0802148105

10.1139/z92-172

10.1242/jeb.51.2.271b

Prosser C.L., 1973, Comparative Animal Physiology

10.1046/j.1365-2435.1999.00300.x

10.1111/j.1558-5646.1996.tb03937.x

10.1111/j.0269-8463.2004.00856.x

10.1242/jeb.02588

10.1098/rstb.2007.2101

10.1016/j.plrev.2006.08.001

10.1086/284041

10.1086/285459

10.1016/j.resp.2004.01.006

West G.B., 1991, A general model for the origin of allometric scaling laws in biology, Science, 4, 122

10.1242/jeb.01589

10.1098/rsbl.2005.0378

10.1016/S0165-7836(98)00079-4