The interplay between algebras and lattices: Stone–Weierstrass for illustration
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beukers, F., Huisjmans, C.B., de Pagter, B.: Unital embedding and complexification of $$f$$-algebras. Math. Z. 183, 131–144 (1983)
Bonsall, F.F., Duncan, J.: Complete Normed Algebras. Springer-Verlag, Berlin-Heidelberg-New York (1973)
Boulabiar, K., Bououn, S.: Truncated vector lattices of bounded real-valued functions, Submitted
Boulabiar, K., Buskes, G., Henriksen, M.: A generalization of a theorem on biseparating maps. J. Math. Ana. Appl. 280, 334–349 (2003)
Boulabiar, K., Hajji, R.: Representation of strongly truncated Riesz spaces. Indag. Math. 31, 741–757 (2020)
Bustamante, J., Arrazola, J.R., Escobedo, R.: $$A$$-realcompact spaces. Revista Mat. Complutense 11, 17–29 (1998)
Garrido, M.I., Jaramillo, J.A.: Variations on the Banach–Stone Theorem. Extrecta Math. 17, 351–383 (2002)
Groenewegen, G.L.M., van Rooij, A.C.M.: Spaces of Continuous Functions. Atlantis Press, Amsterdam (2016)
Huijsmans, C.B., de Pagter, B.: Subalgebras and Riesz subspaces of an $$f$$-algebra. Proc. Lond. Math. Soc. 48, 161–174 (1984)
Kusraev, A.G., Tabuev, S.N.: Multiplicative representation of bilinear operators. Siberian Math. J. 49, 357–366 (2008)
Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Math. Surveys Mono graphs, vol. 53, Am. Math. Soc., Providence (1997)