The interaction of water with archaeological and ethnographic birch bark and its effects on swelling, shrinkage and deformations

Johanna Klügl1, Giovanna Di Pietro1
1Bern University of the Arts, Bern, Switzerland

Tóm tắt

AbstractThe aim of this study is to gain specific information on the water vapour interaction with archaeological and ethnographic birch bark. Water is involved in a number of curative and preventive conservation measurements e.g. when re-shaping or drying objects and when defining climate directives for long-term storage. We measured the sorption isotherm of archaeological, ethnographic and contemporary birch bark at different temperatures and analysed the moisture-induced size and shape changes (swelling, shrinkage, deformation) during humidification and drying. The analysis revealed that, compared to other organic materials like wood, the moisture uptake of outer birch bark is modest. This can be attributed to the cell structure and composition: outer birch bark is composed of closed cells made to a large extent of hydrophobic components (suberin, lignin). The equilibrium moisture content is higher if lenticels or inner bark are present. The extent of brittleness and delamination of the sample influences the sorption behaviour: the less brittle and delaminated archaeological birch bark is, the lower the equilibrium moisture content (EMC). Since the moisture uptake is modest, the related swelling of the outer bark is also modest, but anisotropic due to the cellular arrangement. Swelling is largest in the radial direction, smaller in longitudinal and negligible in tangential direction. Water vapour can plasticize birch bark and as birch bark becomes flexible, it bends towards the outside of the bark. This deformation takes place at high moisture contents and the adsorption process is slow. Based on these results recommendations on how best to perform treatments involving moisture and on relative humidity ranges for birch bark objects are provided.

Từ khóa


Tài liệu tham khảo

Klügl J. How to conserve a birch bark bow case from an ice patch? In: Grant T, Cook C, editors. 12th ICOM-CC Group on Wet Organic Archaeological Materials Conference. Istanbul: ICOM-CC WOAM; 2013. p. 270–8.

Ward C, Giles D, Sully D, Lee JD. The conservation of a group of waterlogged neolithic bark bowls. Stud Conserv. 1996;41:241–9.

Gilberg RM, Grant J. The care and preservation of birch bark scrolls in museum collections. Curator. 1986;29(1):67–80.

Fischer A. Eine sibirische Birkenrindentasche mit Fischhauteinfassung aus dem Amurgebiet. In: Knaut M, Jeberien A, editors. Dem Objekt genähert Konservierung und Restaurierung ungewöhnlicher kulturhistorischer Materialien. Berlin: Hochschule für Technik und Wirtschaft Berlin; 2010. p. 9–37.

Hoffmann P. Postkarten aus Birkenrinde: wie sind sie zu entrollen Restauro: Zeitschrift für Kunsttechniken. Restaurierung Museumsfragen. 1998;104(4):246–7.

Dignard C, Kata S, Poulin J, Tse S. A comparison of ethanol and methanol vapour treatments for reshaping birch bark. In: Bridgland J, editor. ICOM-CC 18th Triennial Conference. Copenhagen: International Council of Museums; 2017.

Klügl J, Hafner A, Di Pietro G. On the rolling and plasticization of birch bark (submitted). In: Williams E, editor. 14th ICOM-CC Wet Organic Archaeological Materials (WOAM) Working Group Conference. UK: Portsmouth; 2019.

Gilberg RM. Plasticization and forming of misshapen birch-bark artifacts using solvent vapours. Stud Conserv. 1986;31(4):177–84.

Larsen PK, Jensen LA, Ryhl-Svendsen M, Padfield T. The microclimate within a Neolithic passage grave. In: Bridgland J, editor. ICOM-CC 18th Triennial Conference. Copenhagen: International Council of Museums; 2017. p. 109–27.

Orsini S, Ribechini E, Modugno F, Klügl J, Di Pietro G, Colombini MP. Micromorphological and chemical elucidation of the degradation mechanisms of birch bark archaeological artefacts. Heritage Science. 2015. https://doi.org/10.1186/s40494-015-0032-7.

Natalia Vasiljeva, personal communication, September 2018.

Grattan DW. Waterlogged Wood. In: Pearson C, editor. Conservation of marine archaeological objects. London/Boston: Butterworth; 1987. p. 55–67.

Barbour RJ, Rowell RM. Archaeological wood : properties, chemistry, and preservation. In: Advances in chemistry, vol 225. Washington: American Chemical Society; 1990

Lüttge U, Kluge M, Bauer G. Botanik. Weinheim: Wiley Verlag; 2005.

Kost B, der Gefäßpflanzen G. In: Kadereit JW, Körner C, Kost B, Sonnewald U, editors. Strasburger – Lehrbuch der Pflanzenwissenschaften. Springer: Heidelberg; 2014. p. 72–96.

Shibui H, Sano Y. Structure and formation of phellem of Betula maximowicziana. International Association of Wood Anatomists (IAWA journal). 2018;39(1):18–36. https://doi.org/10.1163/22941932-20170186.

Zajączkowska U. Cork. eLS. 2016;2016:1–8.

Pereira H. Cork: biology, production and uses. Amsterdam: Elsevier; 2007.

Ferreira JPA, Quilhó T, Pereira H. Characterization of Betula pendula outer bark regarding cork and phloem components at chemical and structural levels in view of biorefinery integration. J Wood Chem Technol. 2017;37(1):10–25. https://doi.org/10.1080/02773813.2016.1224248.

Bhat KM. Anatomy, basic density and shrinkage of birch bark. Int Assoc Wood Anat Bull. 1982;3(3/4):207–13.

Niklas KJ. The mechanical role of bark. Am J Bot. 1999;86(4):465–9.

Schönherr J, Ziegler H. Water permeability of Betula periderm. Planta. 1980;147(4):345–54.

Chang Y-P. Anatomy of common North American pulpwood barks. New York: Technical Association of the Pulp and Paper Industry; 1954.

Trockenbrodt M. Qualitative Structural Changes during Bark Development in Quercus Robur, Ulmus Glabra, Populus Tremula and Betula Pendula. IAWA Journal. 1991;12(1):5–22.

Groh B, Hübner C, Lendzian K. Water and oxygen permeance of phellems isolated from trees: the role of waxes and lenticels. Planta. 2002;215(5):794–801.

Holmberg A, Wadsö L, Stenström S. Water vapor sorption and diffusivity in bark. Drying Technol. 2016;34(2):150–60. https://doi.org/10.1080/07373937.2015.1023310.

Schneider A. Orientierende Vergleichsuntersuchungen über das Sorptionsverhalten mitteleuropäischer Baumrinden und Hölzer. Holz als Roh-und Werkstoff. 1978;36(6):235–9.

Standke W, Schneider A. Investigations on the sorption-behaviour of the inner and outer bark of different trees. Holz als Roh-und Werkstoff. 1981;39(12):489–93.

Wilhelmsen G. Bark-water relationships: III. Moisture content and water absorption capacity in bark of Norway spruce, Scots pine and birch. Tidsskr Skogbruk. 1970;78(4):403–10.

Kajita H. Juhi-mizukei no sogo sayo (The bark-water relationship). Zairyo J Soci Mater Sci. 1975;264(24):862–6.

Krahmer RL, Wellons JD. Some anatomical and chemical characteristics of Douglas-Fir cork. Wood Science. 1973;6:97–105.

Rosa ME, Fortes MA. Water absorption by cork. Wood Fiber Sci. 1993;25(4):339–48.

Beck BC. An introduction to plant structure and development. Cambridge: Cambridge University Press; 2010.

Orgell WH. The isolation of plant cuticle with pectic enzymes. Plant Physiol. 1955;30:78–80.

Schreiber L, Schönherr J. Water and solute permeability of plant cuticles: measurement and data analysis. Berlin: Springer; 2009.

Murr A, Lackner R. Analysis on the influence of grain size and grain layer thickness on the sorption kinetics of grained wood at low relative humidity with the use of water vapour sorption experiments. Wood Sci Technol. 2018;52(3):753–76. https://doi.org/10.1007/s00226-018-1003-4.

McBain JW, Bakr AM. A new sorption balance1. J Am Chem Soc. 1926;48(3):690–5.

Fredriksson M, Thybring EE. Scanning or desorption isotherms? Characterising sorption hysteresis of wood Cellulose. 2018;25(8):4477–85. https://doi.org/10.1007/s10570-018-1898-9.

Standke W, Schneider A. Untersuchungen über das Sorptionsverhalten des Bast- und Borkeanteils verschiedener Baumrinden. Holz als Roh- und Werkstoff (European journal of wood and wood products). 1981;39:489–93.

Glass S, Zelinka S. Chapter 4 Moisture relations and physical properties of wood. In: Wood handbook—Wood as an engineering material. U.S. Department of Agriculture, Forest Service; 2010. p. 4.1–4.19

Esteban LG, de Palacios P, García Fernández F, García-Amorena I. Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodegrad. 2010;64(5):371–7. https://doi.org/10.1016/j.ibiod.2010.01.010.

Staudt PB, Kechinski CF, Tessaro IC, Marczak LDF, Soares RD, Cardozo NSM. A new method for predicting sorption isotherms at different temperatures using the BET model. J Food Eng. 2013;114:139–45.

Karoglou M, Moropoulou A, Maroulis ZB, Krokida MK. Water sorption isotherms of some building materials. Drying Technol. 2005;23:289–303.

Jänchen J, Bauermeister A, Feyh N, de Vera J-P, Rettberg P, Flemming H-C, et al. Water retention of selected microorganisms and Martian soil simulants under close to Martian environmental conditions. Planet Space Sci. 2014;98:163–8. https://doi.org/10.1016/j.pss.2013.06.011.

Jänchen J, Bish DL, Mohlmann DTF, Stach H. Investigation of the water sorption properties of Mars-relevant micro- and mesoporous minerals. Icarus. 2006;180(2):353–8. https://doi.org/10.1016/j.icarus.2005.10.010.

Zelinka SL, Lambrecht MJ, Glass SV, Wiedenhoeft AC, Yelle DJ. Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry. Thermochim Acta. 2012;533:39–45. https://doi.org/10.1016/j.tca.2012.01.015.

Engelund ET, Thygesen LG, Svensson S, Hill CAS. A critical discussion of the physics of wood–water interactions. Wood Sci Technol. 2013;47(1):141–61. https://doi.org/10.1007/s00226-012-0514-7.

Willems W. Equilibrium thermodynamics of wood moisture revisited: presentation of a simplified theory. Holzforschung. 2016;70:963–70. https://doi.org/10.1515/hf-2015-0251.

Johnston N: Humidity, it’s all-relative: humidification treatment of a birch bark canoe model, part 2. (2015). Accessed 10 Oct 2019

Maitland C. Learning to conserve a Kashmiri birch bark manuscript. Book Pap Group Annu. 2016;35:49–60.