The interaction of prostaglandins with human serum lipoproteins

Bioscience Reports - Tập 9 - Trang 27-40 - 1989
L. D. Bergelson1
1Institute of Experimental Cardiology, Cardiological Center of the USSR Academy of Medical Sciences, Moscow, USSR

Tóm tắt

Using high density and low density lipoproteins (HDL and LDL) labeled with fluorescent analogues of phosphatidylcholine or sphingomyelin it was found that low amounts (10−12 M) of prostaglandins E1 and F2α induced different structural rearrangements of the lipoprotein surface, whereas prostaglandins E2 and F1α had no effect. The effects of prostaglandin E1 on HDL were largely paralled by those of this prostaglandin on synthetic recombinants prepared from pure apolipoprotein A1, phospholipids and cholesterol and were demonstrated to be caused by prostaglandin-apolipoprotein interaction. The interaction resembled that of a ligand with a specific receptor protein because it was specific, reversible, concentration and temperature dependent and saturable. However the retaining capacity of HDL or LDL for prostaglandin E1 as determined by equilibrium dialysis was very low and a single prostaglandin E1 molecule was able to induce structural changes in large numbers of discrete lipoprotein particles. To explain this remarkable fact a non-equilibrium model of ligand-receptor interaction is proposed. According to that model in open systems characterized by weak ligand-receptor binding, high diffusion rate of the ligand and long relaxation times which exceed the interval between two successive receptor occupations, the ligand-induced changes will accumulate, resulting in transformation of the system into a new state which may be far away from equilibrium. It is emphasized that the low mobility of lipids constituting the environment of the receptor protein plays a critcal role in this type of signal amplification. It was further demonstrated that the PGE1-induced changes of the lipoprotein surface resulted in an enhancement of LDL-to-HDL transfer of cholesterol esters and phosphatidylcholine especially in the presence of serum lipid transfer proteins. The acceleration of the interlipoprotein transfer caused by prostaglandin E1 in turn increases the rate of cholesterol esterification in serum. It is suggested that in such a way prostaglandin E1 may influence the homeostasis of cholesterol.

Tài liệu tham khảo

Owen, J. S. and McIntyre, N. (1982)Trends Biochem. Sci. 7:95–98. Eisenberg, S. (1984)J. Lipid Res. 25:1017–1058. Dasting, G. J., Moncada, S. and Vane, J. R. (1979)Progr. in Cardiovascular Diseases 21:405–431. Manevich, E. M., Muzia, G. I., Prokazova, N. V., Molotkovsky, Jul. G., Bezuglov, V. V. and Bergelson, L. D. (1984)FEBS Letters 173:291–294. Bergelson, L. D., Manevich, E. M., Molotkovsky, Jul. G., Muzya, G. I. and Martynova, M. A. (1987)Biochim. Biophys. Acta 921:182–190. Bergelson, L. D., Kulikov, V. I. and Muzya, G. I. (1985)FEBS Letters 190:305–306. Molotkovsky, Jul. G., Manevich E. M., Gerasimova, E. N., Molotkovskaya, I. M., Polessky, V. A. and Bergelson, L. D. (1982)Eur. J. Biochem. 122:573–579. Martynova, M. G., Muzya, G. I., Manevich, E. M., Vodovozova, E. L., Molotkovsky, Jul. G., Bezuglov, V. V. and Bergelson, L. D. (1988)Biochimya, in press. Bergelson, L. D., Molotkovsky, Jul. G., Manevich, E. M. (1985)Chem. Phys. Lipids 37:165–195. Manevich, E. M., Lakin, K. M., Archakov, A. I., Li, V. S., Molotkovsky, Jul. G., Bezuglov, V. V. and Bergelson, L. D. (1985)Biochim. Biophys. Acta 815:455–460. Molotkovsky, Jul. G., Molotkovskaya, I. M. and Bergelson, L. D. (1985)Biol. Membrany 2:499–506. Bukrinskaya, A. G., Molotkovsky, Jul. G., Vodovozova, E. L., Manevich, E. M. and Bergelson, L. D. (1987)Biochim. Biophys. Acta 897:285–292. Manevich, E. M., Tonevitsky, A. G. and Bergelson, L. D. (1986)FEBS Letters 194: 313–316. Bergelson, L. D. (1985) Proc. 16th FEBS Congress, Part B, 478–481, VNA Science Press. Cho, K. C., Chou, C. L. and Young, K. (1981)Biochim. Biophys Acta 663:14–21. Tsuchida, K., Hatta, I., Imaizumi, S., Ohki, K. and Nozawa, Y. (1985)Biochim. Biophys. Acta 812:249–254. Rehorek, M., Dencher, N. A. and Heyn, M. (1985)Biochemistry 24:5980–5988. Morriset, J. D., Jackson, R. L. and Gotto, A. M. (1977)Biochem. Biophys. Acta 472: 93–133. Kulikov, V. I., Muzya, G. I. and Bergelson, L. D. (1984)Biochimia 49:1449–1455. Muzya, G. I., Korobkova, E. N., Golovanova, N. K. and Bergelson, L. D. (1987)FEBS Letters 220:371–375. Nestel, P. J., Reardon, M. and Billington, T. (1979)Biochim. Biophys. Acta 573: 403–407. Fielding, C. J. and Fielding, P. E. (1981)J. Biol. Chem. 256:2102–2104. Eisenberg, S. and Perret, B. (1981)Arteriosclerosis 1:363a. Barter, P. J., Hopkins, G. J., Gorjatschko, L. and Jones, M. E. (1982).Atherosclerosis 44:27–40. Eisenberg, S. (1985)J. Lipid Res. 26:487–494. Tall, A. R., Abreu, E. and Shuman, J. (1983)J. Biol. Chem. 258:2174–2180. Massly, B., Gotto, A. M. and Pownall, H. J. (1982)J. Biol. Chem. 257:5444–5448. Tall, A. R. (1986)J. Lipid Res. 27:361–367. Molotkovsky, Jul. G., Dmitriev, P. I., Nikulina, L. F. and Bergelson L. D., (1979)Bioorgan. Khimia 5:588–594. Molotkovsky, Jul. G., Dmitriev, P. I., Molotkovskaya, I. M., Manevich, E. M. and Bergelson, L. D. (1981)Bioorgan. Khimia 7:586–600. Vodovozova, E. L., Molotkovsky, Jul. G. and Bergelson, L. D. (1984)Bioorgan. Khimia 10:1688–1694. Koshland, D. E. (1958)Proc. Natl. Acad. Sci. U.S.A. 44:98–105.