The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function

Journal of Neuroscience Research - Tập 98 Số 1 - Trang 87-97 - 2020
Jiankun Zang1,2, Dan Lu1,2, Chunxue Wang1,2
1Clinical Neuroscience Institute of Jinan University, Guangzhou, China
2Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China

Tóm tắt

AbstractThe widespread expression of circular RNAs (circRNAs) is regarded as a feature of gene expression in highly diverged eukaryotes. Recent studies have shown that circRNAs can act as a miRNA sponge to repress miRNA function, participate in splicing of target genes, translate genes into protein and interact with RNA binding proteins (RBPs). RBPs are a broad class of proteins involved in gene transcription and translation, and interaction with RBPs is considered an important part of circRNA function, which can serve as an essential element underlying the functions of circRNAs, including genesis, translation, transcriptional regulation of target genes, and extracellular transport. In this mini‐review, we attempt to explore in detail the relationship between circRNAs and RBPs, and the interactions between the two factors. The goal of this review is to investigate the emerging studies of RBPs and circRNAs to better understand how their interaction alters cellular function.

Từ khóa


Tài liệu tham khảo

10.1080/15476286.2017.1279788

10.3389/fphys.2016.00355

10.1073/pnas.0407523102

10.1073/pnas.0400805101

10.1016/j.molcel.2014.08.019

10.1038/srep08057

10.1016/0896-6273(93)90077-5

10.1002/wrna.1294

10.1136/jmedgenet-2016-103758

10.1038/onc.2017.89

10.1016/j.cell.2015.02.014

10.1038/cdd.2016.133

Du W. W., 2017, Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses, European Heart Journal, 38, 1402

10.1093/nar/gkw027

10.1038/cdd.2016.27

10.7150/thno.21299

10.1080/15476286.2015.1128065

10.1038/ncomms14741

Fei T., 2017, Genome‐wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing, Proceedings of the National Academy of Sciences, 114, E5207

10.7150/thno.15262

Go G. W., 2012, Low‐density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis, Yale Journal of Biology and Medicine, 85, 19

10.1186/s13059-014-0409-z

Guo X. Y., 2017, circRNA_0046367 prevents hepatoxicity of lipid peroxidation: An inhibitory role against hepatic steatosis, Oxidative Medicine & Cellular Longevity, 2017, 3960197

10.1038/nature11993

10.1038/emboj.2013.53

10.1007/s00018-017-2688-5

10.1038/ncomms12429

10.1080/15548627.2017.1356975

10.1111/j.1600-065X.2009.00789.x

10.1016/j.febslet.2015.04.036

10.1007/978-1-4614-0332-6_7

10.1016/S0896-6273(00)80900-9

10.1016/j.bbagrm.2017.10.001

10.1016/j.molcel.2011.06.008

10.1016/j.molcel.2017.02.017

10.1016/j.molcel.2017.05.023

Li J., 2015, Circular RNAs in cancer: Novel insights into origins, properties, functions and implications, American Journal of Cancer Research, 5, 472

10.1038/cr.2015.82

10.7150/thno.19353

10.4161/cam.1.3.5114

10.3389/fgene.2016.00053

10.1038/nrm2178

10.1080/15476286.2016.1227904

10.1038/nature14581

10.1038/nature11928

10.1016/j.cell.2015.10.012

10.18632/oncotarget.19228

10.1016/j.molcel.2017.02.021

10.1073/pnas.191388398

10.1111/cas.12534

10.1038/ncb1596

10.1038/cdd.2017.61

10.1016/j.cell.2015.05.014

10.1126/science.aad4939

10.1016/j.ymthe.2017.05.022

10.1038/cr.2017.31

10.1093/jnci/djx166

Yang L., 2017, Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial‐mesenchymal transition, Autophagy, 1

10.1073/pnas.95.22.13254

10.1038/nn.3975

10.1038/s41467-017-01216-w

10.1038/s41388-017-0019-9

10.1007/s11427-014-4647-9