The influence of the dispersion method on the electrical properties of vapor-grown carbon nanofiber/epoxy composites

Nanoscale Research Letters - Tập 6 - Trang 1-5 - 2011
Paulo Cardoso1,2, Jaime Silva1,2, Donald Klosterman3, José A Covas2, Ferrie WJ van Hattum2, Ricardo Simoes2,4, Senentxu Lanceros-Mendez1
1Center/Department of Physics, University of Minho, Braga, Portugal
2IPC/I3N--Institute for Polymers and Composites, University of Minho, Guimarães, Portugal
3Chemical & Materials Engineering, University of Dayton, Dayton, USA
4School of Technology, Polytechnic Institute of Cávado and Ave, Barcelos, Portugal

Tóm tắt

The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity. PACS: 72.80.Tm; 73.63.Fg; 81.05.Qk

Tài liệu tham khảo

May CA: Epoxy resins: chemistry & technology. New York, NY: Marcel Dekker Inc; 1987. Moniruzzaman M, Winey KI: Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules 2006, 39: 5194. 10.1021/ma060733p Al-Saleha MH, Sundarara U: A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 2009, 47: 2. 10.1016/j.carbon.2008.09.039 Applied Sciences Inc[http://www.apsci.com/ppi-pyro3.html] last accessed on 26 April 2011 Allaoui A, Hoa SV, Pugh MD: The electronic transport properties and microstructure of carbon nanofiber/epoxy composites. Compos Sci Technol 2008, 68: 410. 10.1016/j.compscitech.2007.06.028 Patton RD Jr, Pittman CU, Wang L, Hill JR: Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices. Composites A 1999, 30: 1081. 10.1016/S1359-835X(99)00018-4 Zhou Y, Pervin F, Jeelani S: Effect vapor grown carbon nanofiber on thermal and mechanical properties of epoxy. J Mater Sci 2007, 42: 7544. 10.1007/s10853-007-1618-6 Prasse T, Cavillé J-Y, Bauhofer W: Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment. Compos Sci Technol 2003, 63: 1835. 10.1016/S0266-3538(03)00019-8 Simoes R, Silva J, Vaia R, Sencadas V, Costa P, Gomes J, Lanceros-Mendez S: Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments. Nanotechnology 20: 35703. Simoes R, Silva J, Lanceros-Mendez S, Vaia R: Influence of fiber aspect ratio and orientation on the dielectric properties of polymer-based nanocomposites. J Mater Sci 2009, 45: 268. 10.1007/s11003-009-9185-4 Costa P, Silva J, Sencadas V, Costa CM, van Hattum FWJ, Rocha JG, Lanceros-Mendez S: The effect of fibre concentration on the [alpha] to [beta]-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites. Carbon 2009, 47: 2590. 10.1016/j.carbon.2009.05.011 Cardoso P, Silva J, Paleo AJ, van Hattum FWJ, Simoes R, Lanceros-Méndez S: The dominant role of tunneling in the conductivity of carbon nanofiber-epoxy composites. Phys Status Solidi A 2010, 207: 407. 10.1002/pssa.200925334 Aguilar JO, Bautista-Quijano JR, Avilés F: Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Exp Polym Lett 2010, 4: 292. 10.3144/expresspolymlett.2010.37 Paiva MC, Covas JA, et al.: The influence of extensional flow on the dispersion of functionalized carbon nanofibers in a polymer matrix. Proc ChemOnTubes, Zaragoza 2008, 6. Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Marêché JF: Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 1996, 53: 6209. 10.1103/PhysRevB.53.6209 Balberg I, Anderson CH, Alexander S, Wagner N: Excluded volume and its relation to the onset of percolation. Phys Rev B 1984, 30: 3933. 10.1103/PhysRevB.30.3933