The influence of oxygen on the formation of donor centers in silicon layers implanted with erbium and oxygen ions

Semiconductors - Tập 39 - Trang 742-747 - 2005
O. V. Aleksandrov1, A. O. Zakhar’in2, N. A. Sobolev2
1St. Petersburg State Electrotechnical University, St. Petersburg, Russia
2Ioffe Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg, Russia

Tóm tắt

A model of the formation of donor centers introduced by a combined implantation of Er+ and O+ ions into silicon with subsequent thermal annealing is developed. These centers are multiparticle erbium-oxygen complexes ErOn with n≥4. The competing process of formation of electrically inactive oxygen clusters is taken into account. The model makes it possible to describe the dependence of the activation coefficient for the donor centers on the implantation dose of oxygen ions and, also, the effects of the oxygen ion implantation and annealing temperature on the concentration profiles of the donor centers.

Tài liệu tham khảo

N. A. Sobolev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 29, 1153 (1995) [Semiconductors 29, 595 (1995)]. J. Michel, L. V. C. Assali, M. T. Morse, and L. C. Kimerling, Semicond. Semimet. 49, 111 (1998). F. Priolo, S. Coffa, G. Franzo, et al., J. Appl. Phys. 74, 4936 (1993). N. A. Sobolev, A. M. Emel’yanov, Yu. A. Kudr’yavtsev, et al., Solid State Phenom. 57–58, 213 (1997). V. V. Emtsev, V. V. Emtsev, Jr., D. S. Poloskin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 1192 (1999) [Semiconductors 33, 1084 (1999)]. V. V. Emtsev, Jr., C. A. J. Ammerlaan, B. A. Andreev, et al., Solid State Phenom. 82–84, 93 (2002). O. V. Aleksandrov, A. O. Zakhar’in, N. A. Sobolev, and E. I. Shek, Izv. S.-Peterb. Gos. Élektrotekh. Univ., No. 516, 48 (1998). D. L. Adler, D. C. Jacobson, D. J. Eaglesham, et al., Appl. Phys. Lett. 61, 2181 (1992). A. Terrasi, G. Franzo, S. Coffa, et al., Appl. Phys. Lett. 70, 1712 (1997). V. F. Masterov, F. S. Nasredinov, P. P. Seregin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 708 (1998) [Semiconductors 32, 636 (1998)]. J. D. Carrey, J. Phys.: Condens. Matter 14, 8537 (2002). U. Wahl, J. C. Correia, J. P. Araujo, et al., Physica B (Amsterdam) 273–274, 342 (1999). O. V. Aleksandrov and A. O. Zakhar’in, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 1291 (2002) [Semiconductors 36, 1209 (2002)]. T. Hallberg and J. L. Lindstrom, J. Appl. Phys. 72, 5130 (1992). H. Koyama, J. Appl. Phys. 51, 3202 (1980). V. V. Emtsev, Jr., G. A. Oganesyan, and K. Schmalz, Solid State Phenom. 47–48, 259 (1996). R. C. Newman, J. Phys.: Condens. Matter 12, R335 (2000). A. Ourmazd, W. Schroter, and A. Bourret, J. Appl. Phys. 56, 1670 (1984). M. Suezawa and K. Sumino, Phys. Status Solidi 82, 235 (1984). E. Chason, S. T. Picraux, J. M. Poate, et al., J. Appl. Phys. 81, 6513 (1997). R. Krause-Rehberg, F. Borner, F. Redmann, et al., Physica B (Amsterdam) 308–310, 442 (2001). I. A. Abroyan, A. N. Andronov, and A. I. Titov, Physical Foundations of Electron-and Ion-Beam Technology (Vysshaya Shkola, Moscow, 1984) [in Russian]. A. Borghesi, B. Pivac, A. Sassela, and A. Stella, J. Appl. Phys. 77, 4169 (1995). J. C. Mikkelsen, Mater. Res. Soc. Symp. Proc. 59, 19 (1986). L. Pelaz, G. H. Gilmer, M. Jaraiz, et al., Appl. Phys. Lett. 73, 1421 (1998). W. Wijanarakula, Appl. Phys. Lett. 59, 1185 (1991).