Ảnh hưởng của điều kiện hoạt động đến cấu trúc bề mặt của cặn trong buồng đốt, độ dày cặn và tính chất nhiệt

Springer Science and Business Media LLC - Tập 3 - Trang 111-127 - 2018
Alex Weidenlener1, Jürgen Pfeil1, Heiko Kubach1, Thomas Koch1, Pourya Forooghi2, Bettina Frohnapfel2, Franco Magagnato2
1Institut für Kolbenmaschinen (IFKM), Karlsruher Institut Für Technologie (KIT), Karlsruhe, Germany
2Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany

Tóm tắt

Trong nghiên cứu này, cấu trúc bề mặt của cặn trong buồng đốt (CCD) trên đỉnh pít-tông và trên đầu xy-lanh được mô tả. Bằng cách sử dụng thiết bị đo độ nhám quang học, độ nhám và chiều cao cấu trúc tối đa được đo lường. Hình ảnh từ kính hiển vi điện tử quét cho phép đánh giá cấu trúc của các cặn trên bề mặt. Ảnh hưởng của dầu đến sự hình thành CCD được đánh giá bằng cách sử dụng phép phân tích bằng tia X tán xạ năng lượng để định lượng các phụ gia dầu điển hình như Mg, Ca hoặc Zn trong các cặn. Thông qua mô phỏng số trực tiếp, ảnh hưởng của cấu trúc CCD đến dòng chảy gần tường và do đó ảnh hưởng đến truyền nhiệt đối lưu được đánh giá. Bằng cách sử dụng các cảm biến nhiệt độ bề mặt nhanh, sự dao động nhiệt độ trên đầu xy-lanh được đo lường. Ứng dụng hai mô hình tiếp cận khác nhau—mô hình Hopwood và mô hình hai lớp—độ dày của lớp CCD được tính toán. Bằng cách tương quan kết quả với các phép đo độ dày lớp bằng thiết bị đo độ nhám quang học được đề cập ở trên, giá trị của độ dẫn nhiệt cho các lớp CCD được tính toán.

Từ khóa


Tài liệu tham khảo

Kalghatgi, G.T.: Combustion chamber deposits in spark-ignition engines: a literature review. SAE Tech. Pap. (1995). https://doi.org/10.4271/952443 Pinto da Costa, J.M.C.: Structural characterization of carbonaceous engine deposits. Dissertation, The University of Edinburgh (2010) Güralp, O.A.: The effect of combustion chamber deposits on heat transfer and combustion in a homogenous charge compression ignition engine. Dissertation, University of Michigan (2008) Güralp, O., Hoffman, M., Assanis, D.N., Filipi, Z., Kuo, T.W., Najt, P., Rask, R.: Thermal characterization of combustion chamber deposits on the HCCI Engine piston and cylinder head using instantaneous temperature measurements. SAE Tech. Pap. (2009). https://doi.org/10.4271/2009-01-0668 Hensel, S., Sarikoc, F., Schumann, F., Kubach, H., Velji, A., Spicher, U.: A New model to describe the heat transfer in HCCI gasoline engines. SAE Int. J. Engines 2(1), 33–47 (2009). https://doi.org/10.4271/2009-01-0129 Hoffman, M.A., Filipi, Z.: Influence of directly injected gasoline and porosity fraction on the thermal properties of HCCI combustion chamber deposits. SAE Tech. Pap. (2015). https://doi.org/10.4271/2015-24-2449 Drake, M.C., Fansler, T.D., Solomon, A.S., Szekely, G.A.: Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine. SAE Tech. Pap. (2003). https://doi.org/10.4271/2003-01-0547 Köpple, F., Seboldt, D., Jochmann, P., Hettinger, A., Kufferath, A., Bargende, M.: Experimental investigation of fuel impingement and spray-cooling on the piston of a GDI engine via instantaneous surface temperature measurements. SAE Int. J. Engines 7(3), 1178–1194 (2014). https://doi.org/10.4271/2014-01-1447 Han, Z., Yi, J., Trigui, N.: Stratified mixture formation and piston surface wetting in a DISI engine. SAE Tech. Pap. (2002). https://doi.org/10.4271/2002-01-2655 Jiao, Q., Reitz, R.D.: Modeling soot emissions from wall films in a direct-injection spark-ignition engine. Int. J. Engine Res. 16(8), 994–1013 (2014). https://doi.org/10.1177/1468087414562008 O’Rourke, P.J., Amsden, A.A.: A particle numerical model for wall film dynamics in port-injected engines. SAE Tech. Pap. (1996). https://doi.org/10.4271/961961 O’Rourke, P.J., Amsden, A.A.: A spray/wall interaction submodel for the KIVA-3 wall film model. SAE Tech. Pap. (2000). https://doi.org/10.4271/2000-01-0271 Desoutter, G., Cuenot, B., Habchi, C., Poinsot, T.: Interaction of a premixed flame with a liquid fuel film on a wall. Proc. Combust. Inst. 30(1), 259–266 (2005). https://doi.org/10.1016/j.proci.2004.07.043 Yamada, Y., Emi, M., Ishii, H., Suzuki, Y., Kimura, S., Enomoto, Y.: Heat loss to the combustion chamber wall with deposit in D.I. diesel engine: variation of instantaneous heat flux on piston surface with deposit. JSAE Rev. 23(4), 415–421 (2002). https://doi.org/10.1016/S0389-4304(02)00233-3 Kalghatgi, G.T., McDonald, C.R., Hopwood, A.B.: an experimental study of combustion chamber deposits and their effects in a spark-ignition engine. SAE Tech. Pap. (1995). https://doi.org/10.4271/950680 Noori, A.R., Rashidi, M.: Computational fluid dynamics study of heat transfer in a spark-ignition engine combustion chamber. J Heat Transf. 129(5), 609 (2007). https://doi.org/10.1115/1.2712474 Kubicki, M., Watson, H.C., Williams, J., Stryker, P.C.: Spatial and temporal temperature distributions in a spark ignition engine piston at WOT. SAE Tech. Pap. (2007). https://doi.org/10.4271/2007-01-1436 Leonardi, S., Orlandi, P., Smalley, R.J., Djenidi, L., Antonia, R.A.: Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229–238 (2003). https://doi.org/10.1017/S0022112003005500 Bhaganagar, K.: Direct numerical simulation of unsteady flow in channel with rough walls. Phys. Fluids 20(10), 101508 (2008). https://doi.org/10.1063/1.3005859 Nusselt, W.: Der Wärmeübergang in der Verbrennungskraftmaschine. Forschungsarbeiten auf dem Gebiet des Ingenieurwesens, vol. 264. Springer, Berlin (1923) Eichelberg, G.: Some new investigations on old combustion engine problems. Engineering 148, 54–550 (1939) Pflaum, W.: Der Wärmeübergang bei Dieselmotoren mit und ohne Aufladung. Jahrbuch der Schiffbautechnischen Gesellschaft, vol. 54. Springer, Berlin (1960) Pischinger, R., Klell, M., Sams, T.: Thermodynamik der Verbrennungskraftmaschine. Springer, Wien (2009). https://doi.org/10.1007/978-3-211-99277-7 Holman, J.P.: Heat Transfer. McGraw-Hill Higher Education, Boston (2010) Woschni, G.: Beitrag zum Problem des Wärmeüberganges im Verbrennungsmotor. Motortechnische Zeitschrift (MTZ) 26(4), 128–133 (1965) Woschni, G.: Die Berechnung der Wandverluste und der thermischen Belastung der Bauteile von Dieselmotoren. Motortechnische Zeitschrift (MTZ) 31(12), 491–499 (1970) Woschni, G., Fieger, J.: Experimentelle Bestimmung des örtlich gemittelten Wärmeübergangskoeffizienten im Ottomotor. Motortechnische Zeitschrift (MTZ) 42(6), 229–234 (1981) Huber, K.: Der Wärmeübergang schnellaufender, direkteinspritzender Dieselmotoren. Dissertation, Technische Universität München (1990) Hohenberg, G.: Experimentelle Erfassung der Wandwärme von Kolbenmotoren. Habilitation thesis, Graz University of Technology (1980) Bargende, M.: Ein Gleichungsansatz zur Berechnung der instationären Wandwärmeverluste im Hochdruckteil von Ottomotoren. Dissertation, Technische Hochschule Darmstadt (1991) Morel, T., Keribar, R.: A Model for predicting spatially and time resolved convective heat transfer in bowl-in-piston combustion chambers. SAE Tech. Pap. (1985). https://doi.org/10.4271/850204 Eiglmeier, C.: Phänomenologische Modellbildung des gasseitigen Wandwärmeüberganges in Dieselmotoren. Dissertation, Leibniz Universität Hannover (2001) Kleinschmidt, W.: Zur Theorie und Berechnung der instationären Wärmeübertragung in Verbrennungsmotoren. In: 4. Tagung “Der Arbeitsprozess des Verbrennungsmotors”. Verlag der Technischen Universität Graz (1993) Aupoix, B.: Improved heat transfer predictions on rough surfaces. Int. J. Heat Fluid Flow 56, 160–171 (2015). https://doi.org/10.1016/j.ijheatfluidflow.2015.07.007 Taylor, R.P., Coleman, H.W., Hodge, B.K.: Prediction of Turbulent Rough-Wall Skin Friction Using a Discrete Element Approach. J. Fluids Eng. 107(2), 251 (1985). https://doi.org/10.1115/1.3242469 Stripf, M., Schulz, A., Bauer, H.J.: Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils. J Turbomach. 130(2), 21003 (2008). https://doi.org/10.1115/1.2750675 Nagano, Y., Hattori, H., Houra, T.: DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness. Int. J. Heat Fluid Flow 25(3), 393–403 (2004). https://doi.org/10.1016/j.ijheatfluidflow.2004.02.011 Orlandi, P., Sassun, D., Leonardi, S.: DNS of conjugate heat transfer in presence of rough surfaces. Int. J. Heat Mass Transf. 100, 250–266 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.035 Forooghi, P., Weidenlener, A., Magagnato, F., Böhm, B., Kubach, H., Koch, T., Frohnapfel, B.: DNS of momentum and heat transfer over rough surfaces based on realistic combustion chamber deposit geometries. Int. J. Heat Fluid Flow 69, 83–94 (2018). https://doi.org/10.1016/j.ijheatfluidflow.2017.12.002 Weidenlener, A., Kubach, H., Pfeil, J., Koch, T.: The influence of operating conditions on combustion chamber deposit surface structure. In: The Ninth International Conference on Modeling and Diagnostics for Advanced Engine Systems (COMODIA) (2017) Polej, A., Wichmann, V.: Instationäre thermische und mechanische Motorbelastung: Instationäre thermische und mechanische Motorbelastung von EURO-III-abgasoptimierten Nutzfahrzeugdieselmotoren. Abschlussbericht FVV Vorhaben Nr. 750 (2002) Sihling K.: Beitrag zur experimentellen Bestimmung des instationären, gasseitigen Wärmeübergangskoeffizienten in Dieselmotoren. Dissertation, Technische Universität Braunschweig (1976) Fieger, J.: Experimentelle Untersuchung des Wärmeübergangs. Dissertation, Technische Universität München (1980) Reipert, P., Mirold, A., Polej, A.: Verfahren zur Bestimmung der gasseitigen. Oberflächentemperaturen und Wärmeströme in Verbrennungsmotoren. In: 5. Dresdner Motorenkolloquium, pp. 90–109. Hochschule für Technik und Wirtschaft Dresden (FH) (2003) Hopwood, A.B., Chynoweth, S., Kalghatgi, G.T.: A technique to measure thermal diffusivity and thickness of combustion chamberdeposits in-situ. SAE Tech. Pap. (1998). https://doi.org/10.4271/982590 Lu, X., Tervola, P.: Transient heat conduction in the composite slab-analytical method. J. Phys. A Math. Gen. 38(1), 81–96 (2005). https://doi.org/10.1088/0305-4470/38/1/005 Edwards, J.C., Choate, P.J.: Average molecular structure of gasoline engine combustion chamber deposits obtained by solid-state 13 C, 31 P, and 1 h nuclear magnetic resonance spectroscopy. SAE Tech. Pap. (1993). https://doi.org/10.4271/932811 Lafer, J.L., Friel, P.J.: Some properties of carbonaceous deposits accumulated in internal combustion engines. Combust. Flame 4, 107–115 (1960). https://doi.org/10.1016/S0010-2180(60)80015-6