The influence of mental fatigue on brain activity: Evidence from a systematic review with meta‐analyses

Psychophysiology - Tập 57 Số 5 - 2020
Yvonne Tran1, Ashley Craig2, Rachel Craig2, Rifai Chai3, Hung T. Nguyen3
1Centre of Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
2John Walsh Centre for Rehabilitation Research, Northern Clinical School, Faculty of Medicine and Health, Kolling Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
3Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia

Tóm tắt

Abstract

The occurrence of mental fatigue during tasks like driving a vehicle increases risk of injury or death. Changes in electroencephalographic (EEG) activity associated with mental fatigue has been frequently studied and considered a promising biomarker of mental fatigue. This is despite differences in methodologies and outcomes in prior research. A systematic review with meta‐analyses was conducted to establish the influence of mental fatigue on EEG activity spectral bands, and to determine in which regions fatigue‐related EEG spectral changes are likely to occur. A high‐yield search strategy identified 21 studies meeting inclusion criteria for investigating the change in EEG spectral activity in non‐diseased adults engaged in mentally fatiguing tasks. A medium effect size (using Cohen's g) of 0.68 (95%CI: 0.24–1.13) was found for increase in overall EEG activity following mental fatigue. Further examination of individual EEG spectral bands and regions using network meta‐analyses indicated large increases in theta (g = 1.03; 95%CI: 0.79–1.60) and alpha bands (g = 0.85; 95%CI: 0.47–1.43), with small to moderate changes found in delta and beta bands. Central regions of the scalp showed largest change (g = 0.80; 95%CI: 0.46–1.21). Sub‐group analyses indicated large increases in theta activity in frontal, central and posterior sites (all g > 1), with moderate changes in alpha activity in central and posterior sites. Findings have implications for fatigue monitoring and countermeasures with support for change in theta activity in frontal, central and posterior sites as a robust biomarker of mental fatigue and change in alpha wave activity considered a second line biomarker to account for individual variability.

Từ khóa


Tài liệu tham khảo

10.1152/ajpregu.1999.277.6.R1771

10.1152/physrev.00015.2007

10.1109/TENCONSpring.2014.6863035

10.1016/j.clinph.2011.06.027

10.1016/j.neubiorev.2013.05.007

10.1016/j.neuropsychologia.2011.09.004

10.1016/j.apmr.2012.02.016

10.1016/j.cogbrainres.2005.04.011

10.1016/j.brainresrev.2008.07.001

10.1002/9780470743386

10.1016/j.neubiorev.2012.10.003

10.1109/EMBC.2012.6347469

10.1136/bmj.331.7521.897

10.1207/S15327108IJAP1201_3

10.1016/j.physbeh.2003.10.004

10.1186/1475-925X-13-28

10.1109/JBHI.2016.2532354

10.1016/S0140-6736(04)15794-2

10.1016/j.tics.2015.02.004

Cohen J., 1988, Statistical power analysis for the behavioral sciences

10.1016/j.neuron.2011.02.040

10.1038/nrn755

10.1016/j.jpsychores.2018.07.007

10.1016/j.biopsycho.2005.07.005

10.1016/j.jpsychores.2012.07.005

10.1111/j.1469-8986.2011.01329.x

10.1109/NER.2013.6696187

Fan X., 2015, Electroencephalogram assessment of mental fatigue in visual search, Biomedical Materials and Engineering, 26, S1455

Fisher Z., 2015, robumeta: An R‐package for robust variance estimation in meta‐analysis, arXiv, 1503.02220

10.1111/j.1467-842X.2005.tb00229.x

Fonseca A., 2018, Brain network changes in fatigued drivers: A Longitudinal study in a real‐world environment based on the effective connectivity analysis and actigraphy data, Frontiers in Human Neuroscience, 12

Gharagozlou F., 2015, Detecting Driver Mental Fatigue Based on EEG Alpha Power Changes during Simulated Driving, Iran Journal of Public Health, 44, 1693

10.1016/j.pneurobio.2012.07.004

10.1002/jrsm.5

10.1136/bmj.327.7414.557

Ishii A., 2014, Neural mechanisms of mental fatigue, Reviews in the Neurosciences, 25, 469

10.1016/j.apergo.2014.02.001

10.1016/j.eswa.2010.07.109

10.1016/j.eswa.2007.12.043

10.3109/00207459608986349

10.1016/S0167-8760(96)00057-8

10.1017/S0140525X12003196

10.1017/S0048577201393095

10.1007/s00406-016-0715-4

10.18637/jss.v080.i05

10.1016/j.apergo.2010.05.008

10.1016/j.brainres.2008.07.053

10.1016/S0001-4575(01)00089-6

10.1016/j.aap.2003.06.002

10.7326/0003-4819-151-4-200908180-00135

10.1016/j.biopsycho.2016.09.010

10.1111/j.1365-2869.2010.00900.x

R Core Team, 2013, R: A language and environment for statistical computing

RStudio Team, 2015, RStudio: Integrated development for R

10.1097/00004691-198710000-00002

10.1016/j.neubiorev.2009.12.006

10.1016/j.neuron.2017.01.014

10.1016/j.aap.2009.06.007

10.1097/NNA.0b013e3181da4078

10.1109/TITS.2018.2868499

10.1016/j.clinph.2010.10.044

10.1016/0013-4694(90)90001-Z

10.1016/j.bandc.2013.12.011

10.1186/1744-9081-8-48

10.1016/0013-4694(87)90096-4

10.1007/BF02347544

10.1027/0269-8803.23.3.143

10.4236/psych.2015.65055

10.1016/0306-4522(93)90128-3

Van Dongen H. P. D., 2000, Principles and practice of sleep Medicine, 391

10.18637/jss.v036.i03

10.1016/j.biopsycho.2013.11.010

10.1016/j.ijpsycho.2006.08.005

10.1016/j.aap.2009.11.011

10.1177/1740774513498322

10.1016/j.aap.2011.11.019

10.1109/JBHI.2016.2544061