Ảnh hưởng của năng lực số, tự tổ chức và khả năng học tập độc lập đến sự chấp nhận học tập số của sinh viên
Tóm tắt
Mặc dù học tập số đã làm gián đoạn các khái niệm và hoạt động học tập truyền thống trong giáo dục đại học, việc sử dụng và chấp nhận của sinh viên là điều thiết yếu cho việc tích hợp thành công học tập số. Sự chấp nhận này phụ thuộc vào các đặc điểm và tính cách của sinh viên, cùng với nhiều yếu tố khác. Trong nghiên cứu của chúng tôi, chúng tôi đã điều tra ảnh hưởng của năng lực số, khả năng tự tổ chức và khả năng học tập độc lập đối với sự chấp nhận học tập số của sinh viên, cũng như ảnh hưởng của sự chấp nhận này đối với sự kháng cự thay đổi từ học tập trực tiếp sang học tập số. Để thực hiện điều này, chúng tôi đã khảo sát 350 sinh viên và phân tích tác động của các tính cách khác nhau bằng phân tích hồi quy phương pháp bình phương tối thiểu thông thường. Chúng tôi có thể xác nhận ảnh hưởng tích cực có ý nghĩa của tất cả các tính cách được thử nghiệm đối với sự chấp nhận học tập số. Với những kết quả này, chúng tôi có thể góp phần vào việc điều tra thêm các yếu tố cơ bản có thể dẫn đến nhận thức tích cực hơn của sinh viên về học tập số và xây dựng nền tảng cho các chiến lược trong tương lai nhằm triển khai học tập số vào giáo dục đại học một cách thành công.
Từ khóa
Tài liệu tham khảo
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433–459. https://doi.org/10.1002/wics.101
Abrosimova, G. A. (2020). Digital literacy and digital skills in university study. International Journal of Higher Education, 9, 52–58. https://doi.org/10.5430/ijhe.v9n8p52
Akcil, U., & Bastas, M. (2020). Examination of University students’ attitudes towards E-learning during the COVID-19 pandemic process and the relationship of digital citizenship. Contemporary Educational Technology, 13, ep291. https://doi.org/10.30935/cedtech/9341
Al-Azawei, A., Parslow, P., & Lundqvist, K. (2017). Investigating the effect of learning styles in a blended e-learning system: An extension of the technology acceptance model (TAM). Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.2741
Allen, I.E., Seaman, J. (2013). Changing course ten years of tracking online education in the United States. Sloan Consortium, Babson Survey Research Group, Pearson Foundation.
Almerich, G., Suárez-Rodríguez, J., Díaz-García, I., & Cebrián-Cifuentes, S. (2020). 21st-century competences: The relation of ICT competences with higher-order thinking capacities and teamwork competences in university students. Journal of Computer Assisted Learning, 36, 468–479. https://doi.org/10.1111/jcal.12413
Ananiadou, K., Claro, M. (2009). 21st century skills and competences for new millennium learners in OECD countries (OECD Education Working Papers No. 41). OECD Education Working Papers. https://doi.org/10.1787/218525261154.
Anthonysamy, L., Koo, A. C., & Hew, S. H. (2020). Self-regulated learning strategies in higher education: Fostering digital literacy for sustainable lifelong learning. Education and Information Technologies, 25, 2393–2414. https://doi.org/10.1007/s10639-020-10201-8
Bergdahl, N., Fors, U., Hernwall, P., & Knutsson, O. (2018). The use of learning technologies and student engagement in learning activities. Nordic Journal of Digital Literacy, 13, 113–130. https://doi.org/10.18261/issn.1891-943x-2018-02-04
Bernard, R. M., Brauer, A., Abrami, P. C., & Surkes, M. (2004). The development of a questionnaire for predicting online learning achievement. Distance Education, 25, 31–47. https://doi.org/10.1080/0158791042000212440
Bessette, L. S. (2020). Digital learning during the COVID-19 pandemic. The National Teaching & Learning Forum, 29, 7–9. https://doi.org/10.1002/ntlf.30241
Bhattarai, S., & Maharjan, S. (2020). Determining the factors affecting on digital learning adoption among the students in Kathmandu Valley: An application of technology acceptance model (TAM). International Journal of Engineering and Management Research, 10, 131–141. https://doi.org/10.31033/ijemr.10.3.20
Carretero, S., Vuorikari, R., Punie, Y. (2017). DigComp 2.1: The Digital Competence Framework for Citizens with eight proficiency levels and examples of use.
Chene, A. (1983). The concept of autonomy in adult education: A philosophical discussion. Adult Education Quarterly, 34, 38–47. https://doi.org/10.1177/0001848183034001004
Chitkushev, L., Vodenska, I., & Zlateva, T. (2014). Digital learning impact factors: Student satisfaction and performance in online courses. International Journal of Information and Education Technology, 4, 356–359. https://doi.org/10.7763/IJIET.2014.V4.429
Claro, S., Loeb, S. (2019). Self-management skills and student achievement gains: Evidence from California’s CORE districts (Working Paper). Policy Analysis for California Education (PACE).
Coker, H. (2020). Why does digital learning matter? Digital competencies, social justice and critical pedagogy in initial teacher education. Journal of Teaching and Learning, 14, 133–141. https://doi.org/10.22329/jtl.v14i1.6259
Costa, C., Murphy, M., Pereira, A. L., & Taylor, Y. (2018). Higher education students’ experiences of digital learning and (dis)empowerment. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.3979
Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation. https://doi.org/10.7275/JYJ1-4868
Dabbagh, N. (2007). The online learner: Characteristics and pedagogical implications. Contemporary Issues in Technology and Teacher Education, 7, 217–226.
Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319–340. https://doi.org/10.2307/249008
Deepwell, F., & Malik, S. (2008). On campus, but out of class: An investigation into students’ experiences of learning technologies in their self-directed study. Research in Learning Technology. https://doi.org/10.3402/rlt.v16i1.10881
European Commission. (2021). Digital skills and jobs [WWW Document]. Shaping Europe’s digital future. Retrieved July 26, 2021 from https://digital-strategy.ec.europa.eu/en/policies/digital-skills-and-jobs.
Ferguson, E., & Cox, T. (1993). Exploratory factor analysis: A users’ guide. International Journal of Selection and Assessment, 1, 84–94. https://doi.org/10.1111/j.1468-2389.1993.tb00092.x
Ferrari, A., Punie, Y., & Redecker, C. (2012). Understanding digital competence in the 21st century: An analysis of current frameworks. Lecture notes in computer scienceIn A. Ravenscroft, S. Lindstaedt, C. D. Kloos, & D. Hernández-Leo (Eds.), 21st Century learning for 21st century skills (pp. 79–92). Berlin: Springer. https://doi.org/10.1007/978-3-642-33263-0_7
Giovannella, C. (2021). Effect induced by the Covid-19 pandemic on students’ perception about technologies and distance learning. In Ó. Mealha, M. Rehm, & T. Rebedea (Eds.), Ludic, co-design and tools supporting smart learning ecosystems and smart education, smart innovation, systems and technologies (pp. 105–116). Singapore: Springer. https://doi.org/10.1007/978-981-15-7383-5_9
Gosling, S. D., John, O. P., Craik, K. H., & Robins, R. W. (1998). Do people know how they behave? Self-reported act frequencies compared with on-line codings by observers. Journal of Personality and Social Psychology, 74, 1337–1349. https://doi.org/10.1037/0022-3514.74.5.1337
Hameed, S., Badii, A., Cullen, A.J. (2008). Effective E-learning integration with traditional learning in a blended learning environment. Presented at the European and Mediterranean Conference on Information Systems 2008, Al Bustan Rotana Hotel, Dubai (pp. 25–26).
Händel, M., Stephan, M., Gläser-Zikuda, M., Kopp, B., Bedenlier, S., & Ziegler, A. (2020). Digital readiness and its effects on higher education students’ socio-emotional perceptions in the context of the COVID-19 pandemic. Journal of Research on Technology in Education. https://doi.org/10.1080/15391523.2020.1846147
Hanif, A., Jamal, F. Q., & Imran, M. (2018). Extending the technology acceptance model for use of e-learning systems by digital learners. IEEE Access, 6, 73395–73404. https://doi.org/10.1109/ACCESS.2018.2881384
Hill, N. S., & Wouters, K. (2010). Comparing apples and oranges: Toward a typology for assessing e-learning effectiveness. In H. Liao, J. J. Martocchio, & A. Joshi (Eds.), Research in personnel and human resources management (pp. 201–242). Emerald Group Publishing Limited: Bingley. https://doi.org/10.1108/S0742-7301(2010)0000029008
Hockings, C., Thomas, L., Ottaway, J., & Jones, R. (2018). Independent learning—What we do when you’re not there. Teaching in Higher Education, 23, 145–161. https://doi.org/10.1080/13562517.2017.1332031
Joshi, K. (1991). A model of users’ perspective on change: The case of information systems technology implementation. MIS Quarterly, 15, 229–242. https://doi.org/10.2307/249384
Kim, H.-W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: A status quo bias perspective. MIS Quarterly, 33, 567–582. https://doi.org/10.2307/20650309
Kingsbury, M. (2014). Encouraging independent learning. In H. Fry, S. Ketteridge, & S. Marshall (Eds.), A handbook for teaching and learning in higher education (pp. 191–201). Routledge.
Klein, P., Ivanjek, L., Dahlkemper, M. N., Jeličić, K., Geyer, M.-A., Küchemann, S., & Susac, A. (2021). Studying physics during the COVID-19 pandemic: Student assessments of learning achievement, perceived effectiveness of online recitations, and online laboratories. Physical Review Physics Education Research, 17, 010117. https://doi.org/10.1103/PhysRevPhysEducRes.17.010117
Kostromina, S. (2013). Academic skills as a basis for self-organization of human activity. Procedia - Social and Behavioral Sciences, 86, 543–550. https://doi.org/10.1016/j.sbspro.2013.08.611
Kreidl, C. (2011). Akzeptanz und Nutzung von E-Learning-Elementen an Hochschulen: Gründe für die Einführung und Kriterien der Anwendung von E-Learning, Medien in der Wissenschaft. Münster: Waxmann.
Kultusministerkonferenz. (2016). Bildung in der digitalen Welt: Strategie der Kultusministerkonferenz.
Kümmel, E., Moskaliuk, J., Cress, U., & Kimmerle, J. (2020). Digital learning environments in higher education: A literature review of the role of individual vs social settings for measuring learning outcomes. Education Sciences, 10, 78. https://doi.org/10.3390/educsci10030078
Lee, M. K. O., Cheung, C. M. K., & Chen, Z. (2005). Acceptance of Internet-based learning medium: The role of extrinsic and intrinsic motivation. Information & Management, 42, 1095–1104. https://doi.org/10.1016/j.im.2003.10.007
Lin, M.-H., Chen, H., & Liu, K.-S. (2017). A study of the effects of digital learning on learning motivation and learning outcome. EURASIA Journal of Mathematics, Science and Technology Education, 13, 3553–3564. https://doi.org/10.12973/eurasia.2017.00744a
Littlejohn, A., Beetham, H., & McGill, L. (2012). Learning at the digital frontier: A review of digital literacies in theory and practice: Learning at the digital frontier. Journal of Computer Assisted Learning, 28, 547–556. https://doi.org/10.1111/j.1365-2729.2011.00474.x
Liu, S.-H., Liao, H.-L., & Peng, C.-J. (2005). Applying the technology acceptance model and flow theory to online e-learning users’ acceptance behavior. Issues in Information Systems, 6, 175–181. https://doi.org/10.48009/2_iis_2005_175-181
Macaskill, A., & Taylor, E. (2010). The development of a brief measure of learner autonomy in university students. Studies in Higher Education, 35, 351–359. https://doi.org/10.1080/03075070903502703
Marakas, G. M., & Hornik, S. (1996). Passive resistance misuse: Overt support and covert recalcitrance in IS implementation. European Journal of Information Systems, 5, 208–219. https://doi.org/10.1057/ejis.1996.26
Martzoukou, K., Fulton, C., Kostagiolas, P., & Lavranos, C. (2020). A study of higher education students’ self-perceived digital competences for learning and everyday life online participation. Journal of Documentation, 76, 1413–1458. https://doi.org/10.1108/JD-03-2020-0041
Mohammadi, H. (2015). Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Computers in Human Behavior, 45, 359–374. https://doi.org/10.1016/j.chb.2014.07.044
Moore, M. G. (1973). Toward a theory of independent learning and teaching. The Journal of Higher Education, 44, 661–679. https://doi.org/10.2307/1980599
Mosca, J. B., Curtis, K. P., & Savoth, P. G. (2019). New approaches to learning for generation Z. Journal of Business Diversity, 19, 66–74. https://doi.org/10.33423/jbd.v19i3.2214
Mothibi, G. (2015). A meta-analysis of the relationship between e-learning and students’ academic achievement in higher education. Journal of Education and Practice, 6, 6–9.
Muresan, M., & Gogu, E. (2013). E-learning challenges and provisions. Procedia - Social and Behavioral Sciences, 92, 600–605. https://doi.org/10.1016/j.sbspro.2013.08.724
Noskova, T., Pavlova, T., & Yakovleva, O. (2021). A study of students’ preferences in the information resources of the digital learning environment. Journal on Efficiency and Responsibility in Education and Science, 14, 53–65. https://doi.org/10.7160/eriesj.2021.140105
Owusu-Fordjour, C., Koomson, C. K., & Hanson, D. (2020). The impact of Covid-19 on learning-the perspective of the Ghanaian student. European Journal of Education Studies, 7, 88–101. https://doi.org/10.5281/ZENODO.3753586
Palan, S., & Schitter, C. (2018). Prolific. ac—A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 22–27. https://doi.org/10.1016/j.jbef.2017.12.004
Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning. Journal of Educational Technology & Society, 12, 150–162.
Radha, R., Mahalakshmi, K., Kumar, V. S., & Saravanakumar, A. R. (2020). E-Learning during lockdown of Covid-19 pandemic: A global perspective. International Journal of Control and Automation, 13, 1088–1099.
Rubach, C., & Lazarides, R. (2021). Addressing 21st-century digital skills in schools—Development and validation of an instrument to measure teachers’ basic ICT competence beliefs. Computers in Human Behavior, 118, 106636. https://doi.org/10.1016/j.chb.2020.106636
Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1, 7–59. https://doi.org/10.1007/BF00055564
Sangrà, A., Vlachopoulos, D., & Cabrera, N. (2012). Building an inclusive definition of e-learning: An approach to the conceptual framework. The International Review of Research in Open and Distributed Learning, 13, 145–159. https://doi.org/10.19173/irrodl.v13i2.1161
Seber, G. A., & Lee, A. J. (2012). Linear regression analysis. Wiley.
Shavelson, R. J. (2013). On an approach to testing and modeling competence. Educational Psychologist, 48, 73–86. https://doi.org/10.1080/00461520.2013.779483
Shopova, T. (2014). Digital literacy of students and its improvement at the university. Journal on Efficiency and Responsibility in Education and Science, 7, 26–32. https://doi.org/10.7160/eriesj.2014.070201
Siddiq, F., Hatlevik, O. E., Olsen, R. V., Throndsen, I., & Scherer, R. (2016). Taking a future perspective by learning from the past—A systematic review of assessment instruments that aim to measure primary and secondary school students’ ICT literacy. Educational Research Review, 19, 58–84. https://doi.org/10.1016/j.edurev.2016.05.002
Stokes, S. P. (2001). Satisfaction of college students with the digital learning environment. The Internet and Higher Education, 4, 31–44. https://doi.org/10.1016/S1096-7516(01)00046-X
Šumak, B., Heričko, M., & Pušnik, M. (2011). A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Computers in Human Behavior, 27, 2067–2077. https://doi.org/10.1016/j.chb.2011.08.005
Tarhini, A., Hone, K., Liu, X. (2013). Extending the TAM model to empirically investigate the students’ behavioural intention to use e-learning in developing countries. Presented at the science and information conference, London, UK (pp. 732–737).
Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd
Tenku Shariman, T.P.N., Talib, O., Ibrahim, N. (2014). The relevancy of digital literacy for Malaysian students for learning with WEB 2.0 Technology. In R. Ørngreen, K. Twedell Levinsen & European Conference on E-Learning (Eds.), Proceedings of the 13th European Conference on E-Learning - ECEL 2014, Aalborg University, Copenhagen, Denmark 30–31 October 2014. Academic Conferences, Reading (pp. 536–544).
Uzun, A. M., Unal, E., & Yamac, A. (2013). Service teachers’ academic achievements in online distance education: The roles of online self-regulation and attitudes. Turkish Online Journal of Distance Education, 14, 131–140.
Vladova, G., Ullrich, A., Bender, B., & Gronau, N. (2021). Students’ acceptance of technology-mediated teaching—How it was influenced during the COVID-19 pandemic in 2020: a study from Germany. Frontiers in Psychology, 12, 636086. https://doi.org/10.3389/fpsyg.2021.636086
Warschauer, M. (2007). The paradoxical future of digital learning. Learning Inquiry, 1, 41–49. https://doi.org/10.1007/s11519-007-0001-5
Yakovleva, A. N., Savvina, I. L., Popova, S. A., & Sleptsova, G. N. (2020). Students’ self-directed learning at language university. Propósitos y Representaciones, 8, e745. https://doi.org/10.20511/pyr2020.v8nSPE3.745