Tầm quan trọng của việc đánh giá triệu chứng ở mức độ chuyển giao chẩn đoán trong việc hiểu rõ dự đoán cho người trưởng thành bị trầm cảm: phân tích dữ liệu từ sáu thử nghiệm kiểm soát ngẫu nhiên

Ciarán O’Driscoll1, Joshua E J Buckman1, Eiko I. Fried2, Rob Saunders1, Zachary D. Cohen3, Gareth Ambler4, Robert J. DeRubeis5, Simon Gilbody6, Steven D. Hollon7, Tony Kendrick8, David Keßler9, Glyn Lewis10, Edward Watkins11, Nicola Wiles12, Stephen Pilling13
1Centre for Outcomes Research and Effectiveness (CORE), Research Department of Clinical Educational & Health Psychology, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
2Department of Clinical Psychology, Leiden University, Leiden, The Netherlands
3Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
4Statistical Science, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
5School of Arts and Sciences, Department of Psychology, 425 S. University Avenue, Philadelphia, PA, 19104-60185, USA
6Department of Health Sciences, University of York, Seebohm Rowntree Building, Heslington, York, YO10 5DD, UK
7Department of Psychology, Vanderbilt University, Nashville, TN, USA
8Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Aldermoor Health Centre, Southampton SO16 5ST, UK
9Centre for Academic Primary Care, Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, Bristol, UK
10Division of Psychiatry, University College London, Maple House, London, W1T 7NF, UK
11Department of Psychology, University of Exeter, Sir Henry Wellcome Building for Mood Disorders Research, Perry Road, Exeter, EX4 4QG, UK
12Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Bristol, UK
13Camden & Islington NHS Foundation Trust, St Pancras Hospital, 4 St Pancras Way, London, NW1 0PE, UK

Tóm tắt

Tóm tắt Giới thiệu Trầm cảm thường được coi là một bệnh lý đơn lẻ với nhiều lựa chọn điều trị tiềm năng. Tuy nhiên, bệnh nhân mắc trầm cảm nặng khác nhau một cách rõ rệt về biểu hiện triệu chứng và các bệnh đồng mắc, ví dụ như với rối loạn lo âu. Ngoài ra, có những biến động lớn trong kết quả điều trị và sự liên quan của một số bệnh đồng mắc lo âu với tiên lượng xấu hơn, nhưng hiểu biết hạn chế về lý do, và ít thông tin để hướng dẫn quản lý lâm sàng đối với trầm cảm. Cần phải cải thiện sự hiểu biết của chúng ta về trầm cảm, bao gồm cả bệnh đồng mắc lo âu, và xem xét mối liên hệ của một loạt triệu chứng với kết quả điều trị. Phương pháp Dữ liệu cá nhân của bệnh nhân từ sáu thử nghiệm kiểm soát ngẫu nhiên (RCTs) trên bệnh nhân trầm cảm (tổng số n = 2858) được sử dụng để ước lượng tác động khác nhau của các triệu chứng đến kết quả ở ba thời điểm sau can thiệp bằng cách sử dụng các mục riêng lẻ và điểm tổng. Mạng lưới triệu chứng (mô hình Gaussian đồ họa) được ước lượng để khám phá các mối quan hệ chức năng giữa các triệu chứng trầm cảm và lo âu và so sánh mạng lưới cho những người hồi phục điều trị và những người có triệu chứng kéo dài nhằm xác định các chỉ số tiên lượng tiềm năng. Kết quả Dự đoán ở cấp độ mục thực hiện tương tự như điểm tổng khi dự đoán kết quả ở 3 đến 4 tháng và 6 đến 8 tháng, nhưng vượt trội hơn điểm tổng cho 9 đến 12 tháng. Bi quan nổi lên như là triệu chứng dự đoán quan trọng nhất (so với tất cả các triệu chứng khác) dựa trên các thời điểm này. Trong cấu trúc mạng lưới tại thời điểm nhập học, các triệu chứng tập hợp thành triệu chứng thể chất, triệu chứng nhận thức và triệu chứng lo âu. Nỗi buồn, bi quan và sự do dự đóng vai trò như những cầu nối giữa các cộng đồng, trong đó nỗi buồn và thất bại/không có giá trị là những triệu chứng trung tâm nhất (tức là liên kết với nhau nhiều nhất). Khả năng kết nối của các mạng lưới tại thời điểm nhập học không khác biệt giữa những người hồi phục trong tương lai so với những người có triệu chứng kéo dài. Kết luận Tầm quan trọng tương đối của các triệu chứng cụ thể trong mối liên quan với kết quả và các tương tác trong mạng lưới nhấn mạnh giá trị của việc đánh giá và xây dựng triệu chứng chuyển giao chẩn đoán trong cả điều trị và tiên lượng. Chúng tôi thảo luận về tiềm năng của các phương pháp thống kê bổ sung nhằm cải thiện sự hiểu biết của chúng ta về tâm bệnh học.

Từ khóa


Tài liệu tham khảo

Arroll B, Chin WY, Martis W, Goodyear-Smith F, Mount V, Kingsford D, et al. Antidepressants for treatment of depression in primary care: a systematic review and meta-analysis. J Prim Health Care. 2016;8(4):325–34. https://doi.org/10.1071/HC16008.

Santoft F, Axelsson E, Öst LG, Hedman-Lagerlöf M, Fust J, Hedman-Lagerlöf E. Cognitive behaviour therapy for depression in primary care: systematic review and meta-analysis. Psychol Med. 2019;49(8):1266–74. https://doi.org/10.1017/S0033291718004208.

Cuijpers P, van Straten a, Bohlmeijer E, Hollon SD, Andersson G. The effects of psychotherapy for adult depression are overestimated: a meta-analysis of study quality and effect size. Psychol Med 2010;40(2):211–223, doi: https://doi.org/10.1017/S0033291709006114.

Eronen MI. Causal discovery and the problem of psychological interventions. New Ideas Psychol. 2020;59:100785. https://doi.org/10.1016/j.newideapsych.2020.100785.

Fried EI, Epskamp S, Nesse RM, Tuerlinckx F, Borsboom D. What are “good” depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. J Affect Disord. 2016;189:314–20. https://doi.org/10.1016/j.jad.2015.09.005.

Cuijpers P, Reynolds CF, Donker T, Li J, Andersson G, Beekman A. Personalized treatment of adult depression: medication, psychotherapy, or both? A systematic review. Depress Anxiety. 2012;29(10):855–64. https://doi.org/10.1002/da.21985.

Hardeveld F, Spijker J, De Graaf R, Nolen WA, Beekman ATF. Recurrence of major depressive disorder and its predictors in the general population: results from The Netherlands Mental Health Survey and Incidence Study (NEMESIS). Psychol Med. 2013;43(1):39–48. https://doi.org/10.1017/S0033291712002395.

Simon GE, Perlis RH. Personalized medicine for depression: can we match patients with treatments? Am J Psychiatry. 2010;167(12):1445–55 Available from: http://psychiatryonline.org/doi/abs/10.1176/appi.ajp.2010.09111680.

Cummings CM, Caporino NE, Kendall PC. Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychol Bull. 2014;140(3):816–45 Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0034733.

Brown TA, Barlow DH. A proposal for a dimensional classification system based on the shared features of the DSM-IV anxiety and mood disorders: implications for assessment and treatment. Psychol Assess. 2009;21(3):256–71. https://doi.org/10.1037/a0016608.

Kessler RC, Ormel J, Petukhova M, McLaughlin KA, Green JG, Russo LJ, et al. Development of lifetime comorbidity in the World Health Organization world mental health surveys. Arch Gen Psychiatry. 2011;68(1):90–100. https://doi.org/10.1001/archgenpsychiatry.2010.180.

Kendler KS. What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Mol Psychiatry. 2013;18(10):1058–66. https://doi.org/10.1038/mp.2013.50.

Wichers M. The dynamic nature of depression: a new micro-level perspective of mental disorder that meets current challenges. Psychol Med. 2014;44(7):1349–60. https://doi.org/10.1017/S0033291713001979.

Fried EI, Nesse RM. Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR*D study. J Affect Disord. 2015;172:96–102. https://doi.org/10.1016/j.jad.2014.10.010.

Fried EI. The 52 symptoms of major depression: lack of content overlap among seven common depression scales. J Affect Disord. 2017;208:191–7. https://doi.org/10.1016/j.jad.2016.10.019.

Bekhuis E, Schoevers R, De Boer M, Peen J, Dekker J, Ven H, et al. Symptom-specific effects of psychotherapy versus combined therapy in the treatment of mild to moderate depression: a network approach. Psychother Psychosom. 2018;87(2):121–3. https://doi.org/10.1159/000486793.

Boschloo L, Cuijpers P, Karyotaki E, Berger T, Moritz S, Meyer B, et al. Symptom-specific effectiveness of an internet-based intervention in the treatment of mild to moderate depressive symptomatology: the potential of network estimation techniques. Behav Res Ther. 2019;122:103440 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005796719301263.

Fried EI, Nesse RM. The impact of individual depressive symptoms on impairment of psychosocial functioning. Gong Q, editor. Plos One. 2014 9(2):e90311.

Fried E, von Stockert S, Haslbeck JMB, Lamers F, Schoevers RA, Penninx BWJH. Using network analysis to examine links between individual depressive symptoms, inflammatory markers, and covariates. Psychol Med 2019;1–9. Available from: https://www.cambridge.org/core/product/identifier/S0033291719002770/type/journal_article

Gollan JK, Fava M, Kurian B, Wisniewski SR, Rush AJ, Daly E, et al. What are the clinical implications of new onset or worsening anxiety during the first two weeks of SSRI treatment for depression? Depress Anxiety. 2012;29(2):94–101. https://doi.org/10.1002/da.20917.

Buckman JEJ, Underwood A, Clarke K, Saunders R, Hollon SD, Fearon P, et al. Risk factors for relapse and recurrence of depression in adults and how they operate: a four-phase systematic review and meta-synthesis. Clin Psychol Rev. 2018;64(7):13–38. https://doi.org/10.1016/j.cpr.2018.07.005.

Judd LL. The role of residual subthreshold depressive symptoms in early episode relapse in unipolar major depressive disorder. Arch Gen Psychiatry. 1999;56(8):764–5. https://doi.org/10.1001/archpsyc.56.8.763.

Webb CA, Cohen ZD, Beard C, Forgeard M, Peckham AD, Björgvinsson T. Personalized prognostic prediction of treatment outcome for depressed patients in a naturalistic psychiatric hospital setting: a comparison of machine learning approaches. J Consult Clin Psychol. 2020;88(1):25–38 Available from: https://doi.apa.org/getdoi.cfm?doi=10.1037/ccp0000451.

Fried EI, Nesse RM. Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med. 2015;13(1):72. https://doi.org/10.1186/s12916-015-0325-4.

Fried E. Moving forward: how depression heterogeneity hinders progress in treatment and research. Expert Rev Neurother. 2017;17(5):423–5 Available from: https://doi.org/10.1080/14737175.2017.1307737.

Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol. 2018;14(1):91–118. https://doi.org/10.1146/annurev-clinpsy-032816-045037.

DeRubeis RJ, Cohen ZD, Forand NR, Fournier JC, Gelfand LA, Lorenzo-Luaces L. The personalized advantage index: translating research on prediction into individualized treatment recommendations. A demonstration. PLoS One. 2014;9(1):1–8.

Fernandez KC, Fisher AJ, Chi C. Development and initial implementation of the dynamic assessment treatment algorithm (DATA). PLoS One. 2017;12(6):1–16.

Borsboom D. A network theory of mental disorders. World Psychiatry. 2017;16(1):5–13. https://doi.org/10.1002/wps.20375.

Heeren A, Bernstein EE, McNally RJ. Deconstructing trait anxiety: a network perspective. Anxiety Stress Coping. 2018;31(3):262–76. https://doi.org/10.1080/10615806.2018.1439263.

Cramer AOJ, Waldorp LJ, van der Maas HLJ, Borsboom D. Comorbidity: a network perspective. Behav Brain Sci. 2010;33(2–3):137–50. https://doi.org/10.1017/S0140525X09991567.

Beard C, Millner AJ, Forgeard MJC, Fried EI, Hsu KJ, Treadway MT, et al. Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychol Med. 2016;46(16):3359–69. https://doi.org/10.1017/S0033291716002300.

Boschloo L, van Borkulo CD, Borsboom D, Schoevers RA. A prospective study on how symptoms in a network predict the onset of depression. Psychother Psychosom. 2016;85(3):183–4. https://doi.org/10.1159/000442001.

Kendler KS, Campbell J. Interventionist causal models in psychiatry: repositioning the mind–body problem. Psychol Med. 2009;39(6):881–7. https://doi.org/10.1017/S0033291708004467.

Newson JJ, Hunter D, Thiagarajan TC. The heterogeneity of mental health assessment. Front Psychiatry. 2020;11(February):1–24.

Buckman JEJ, Saunders R, Cohen ZD, Clarke K, Ambler G, DeRubeis RJ, et al. What factors indicate prognosis for adults with depression in primary care? A protocol for meta-analyses of individual patient data using the Dep-GP database. Wellcome Open Res. 2020;4:69 Available from: https://wellcomeopenresearch.org/articles/4-69/v3.

Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio. 1996;78(2):490–8.

Thomas LJ, Abel A, Ridgway N, Peters T, Kessler D, Hollinghurst S, et al. Cognitive behavioural therapy as an adjunct to pharmacotherapy for treatment resistant depression in primary care: the CoBalT randomised controlled trial protocol. Contemp Clin Trials. 2012;33(2):312–9 Available from: https://doi.org/10.1016/j.cct.2011.10.016.

Lewis G, Mulligan J, Wiles N, Cowen P, Craddock N, Ikeda M, et al. Polymorphism of the 5-HT transporter and response to antidepressants: randomised controlled trial. Br J Psychiatry. 2011;198(6):464–71. https://doi.org/10.1192/bjp.bp.110.082727.

Lewis G, Duffy L, Ades A, Amos R, Araya R, Brabyn S, et al. The clinical effectiveness of sertraline in primary care and the role of depression severity and duration (PANDA): a pragmatic, double-blind, placebo-controlled randomised trial. Lancet Psychiatry. 2019;6(11):903–14. https://doi.org/10.1016/S2215-0366(19)30366-9.

Chalder M, Wiles NJ, Campbell J, Hollinghurst SP, Haase AM, Taylor AH, et al. Facilitated physical activity as a treatment for depressed adults: randomised controlled trial. BMJ. 2012;344:e2758–e2758. https://doi.org/10.1136/bmj.e2758.

Kessler DS, MacNeill SJ, Tallon D, Lewis G, Peters TJ, Hollingworth W, et al. Mirtazapine added to SSRIs or SNRIs for treatment resistant depression in primary care: phase III randomised placebo controlled trial (MIR). BMJ. 2018:k4218 Available from: http://www.bmj.com/lookup/doi/10.1136/bmj.k4218.

Kessler D, Lewis G, Kaur S, Wiles N, King M, Weich S, et al. Therapist-delivered internet psychotherapy for depression in primary care: a randomised controlled trial. Lancet. 2009;374(9690):628–34. https://doi.org/10.1016/S0140-6736(09)61257-5.

Lewis G, Pelosi AJ, Araya R, Dunn G. Measuring psychiatric disorder in the community: a standardized assessment for use by lay interviewers. Psychol Med. 1992;22(02):465 Available from: http://www.journals.cambridge.org/abstract_S0033291700030415.

Buckman JEJ, Saunders R, Cohen ZD, Barnett P, Clarke K, Ambler G, et al. The contribution of depressive ‘disorder characteristics’ to determinations of prognosis for adults with depression: an individual patient data meta-analysis. Psychological Medicine. 2021. Available from: https://www.ssrn.com/abstract=3520082.

Choi SW, Schalet B, Cook KF, Cella D. Establishing a common metric for depressive symptoms: linking the BDI-II, CES-D, and PHQ-9 to PROMIS Depression. Psychol Assess. 2014;26(2):513–27 Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0035768.

Fischer HF, Rose M. Www.common-metrics.org: a web application to estimate scores from different patient-reported outcome measures on a common scale. BMC Med Res Methodol. 2016;16(1):1–5 Available from: https://doi.org/10.1186/s12874-016-0241-0.

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for statistical Computing; 2017. Available from: https://www.r-project.org

StataCorp. Stata Statistical Software: Release 16. College Station: StataCorp LLC; 2019.

Fried EI, Cramer AOJ. Moving forward: challenges and directions for psychopathological network theory and methodology. Perspect Psychol Sci. 2017;12(6):999–1020 Available from: http://journals.sagepub.com/doi/10.1177/1745691617705892.

Jones PJ. Networktools: Tools for identifying important no des in networks. R Package version. 2018;1(0):10–115.

Terluin B, De Boer MR, De Vet HCW. Differences in connection strength between mental symptoms might be explained by differences in variance: reanalysis of network data did not confirm staging. PLoS One 2016;11(11):1–12, e0155205, doi: https://doi.org/10.1371/journal.pone.0155205.

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

Lundberg SM, Lee S-I. A Unified Approach to Interpreting Model Predictions. In: Advances in Neural Information Processing Systems 30; 2017. p. 4765–74.

Molnar C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub; 2019. https://christophm.github.io/interpretable-ml-book/.

van Borkulo CD, Boschloo L, Kossakowski JJ, Tio P, Schoevers RA, Borsboom D, et al. Comparing network structures on three aspects: A permutation test. Manuscr Submitt. 2017:34. https://doi.org/10.13140/RG.2.2.29455.38569.

Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B. 2016;58:267–88.

Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph : network visualizations of relationships in psychometric data. J Stat Softw. 2012;48(4) Available from: http://www.jstatsoft.org/v48/i04/.

Williams DR, Rast P. Back to the basics: rethinking partial correlation network methodology. Br J Math Stat Psychol. 2020;73(2):187–212. https://doi.org/10.1111/bmsp.12173.

Foygel R, Drton M. Extended Bayesian information criteria for Gaussian graphical models. Adv Neural Inf Process Syst. 2010:604–12.

Lorenzo-Luaces L, Rodriguez-Quintana N, Bailey AJ. Double trouble: do depression severity and duration interact to predicting treatment outcomes in adolescent depression? Behav Res Ther. 2020;131:103637. https://doi.org/10.1016/j.brat.2020.103637.

Costantini G, Richetin J, Preti E, Casini E, Epskamp S, Perugini M. Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Pers Individ Dif. 2019;136:68–78 Available from: https://doi.org/10.1016/j.paid.2017.06.011.

Fried EI, Eidhof MB, Palic S, Costantini G, Huisman-van Dijk HM, Bockting CLH, et al. Replicability and generalizability of posttraumatic stress disorder (PTSD) networks: a cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clin Psychol Sci. 2018;6(3):335–51 Available from: http://journals.sagepub.com/doi/10.1177/2167702617745092.

Epskamp S, Borsboom D, Fried EI. Estimating psychological networks and their accuracy: a tutorial paper. Behav Res Methods. 2018;50(1):195–212 Available from: http://link.springer.com/10.3758/s13428-017-0862-1.

Golino H, Shi D, Christensen AP, Garrido LE, Nieto MD, Sadana R, et al. Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: a simulation and tutorial. Psychol Methods. 2020; Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/met0000255.

Borsboom D, Cramer AOJ. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol. 2013;9(1):91–121 Available from: http://www.annualreviews.org/doi/10.1146/annurev-clinpsy-050212-185608.

Bringmann LF, Elmer T, Epskamp S, Krause RW, Schoch D, Wichers M, et al. What do centrality measures measure in psychological networks? J Abnorm Psychol. 2019;128(8):892–903 Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/abn0000446.

Robinaugh DJ, LeBlanc NJ, Vuletich HA, McNally RJ. Network analysis of persistent complex bereavement disorder in conjugally bereaved adults. J Abnorm Psychol. 2014;123(3):510–22 Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/abn0000002.

Jones P, Ma R, McNally RJ. Bridge centrality: a network approach to understanding comorbidity. Multivariate Behav Res. 2019;0(0):1–15 Available from: https://doi.org/10.1080/00273171.2019.1614898.

Letina S, Blanken TF, Deserno MK, Borsboom D. Expanding network analysis tools in psychological networks: minimal spanning trees, participation coefficients, and motif analysis applied to a network of 26 psychological attributes. Complexity. 2019;2019:1–27. https://doi.org/10.1155/2019/9424605.

Elliott H, Jones PJ, Schmidt U. Central symptoms predict posttreatment outcomes and clinical impairment in anorexia nervosa: a network analysis. Clin Psychol Sci. 2020;8(1):139–54. https://doi.org/10.1177/2167702619865958.

Rodebaugh TL, Tonge NA, Piccirillo ML, Fried E, Horenstein A, Morrison AS, et al. Does centrality in a cross-sectional network suggest intervention targets for social anxiety disorder? J Consult Clin Psychol. 2018;86(10):831–44 Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/ccp0000336.

Spiller TR, Levi O, Neria Y, Suarez-Jimenez B, Bar-Haim Y, Lazarov A. On the validity of the centrality hypothesis in cross-sectional between-subject networks of psychopathology. BMC Med. 2020;18(1):1–14.

Dickson JM, Moberly NJ, O’Dea C, Field M. Goal fluency, pessimism and disengagement in depression. PLoS One. 2016;11(11):1–11. https://doi.org/10.1371/journal.pone.0166259.

MacLeod AK, Williams JM, Bekerian DA. Worry is reasonable: the role of explanations in pessimism about future personal events. J Abnorm Psychol. 1991;100(4):478–86 Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/0021-843X.100.4.478.

Price M, Legrand AC, Brier ZMF, Hébert-Dufresne L. The symptoms at the center: examining the comorbidity of posttraumatic stress disorder, generalized anxiety disorder, and depression with network analysis. J Psychiatr Res. 2019;109(June 2018):52–8 Available from: https://doi.org/10.1016/j.jpsychires.2018.11.016.

Van Borkulo C, Boschloo L, Borsboom D, Penninx BWJH, Lourens JW, Schoevers RA. Association of symptom network structure with the course of longitudinal depression. JAMA Psychiatry. 2015;72(12):1219–26. https://doi.org/10.1001/jamapsychiatry.2015.2079.

Schweren L, Van Borkulo CD, Fried E, Goodyer IM. Assessment of symptom network density as a prognostic marker of treatment response in adolescent depression. JAMA Psychiatry. 2018;75(1):98–100. https://doi.org/10.1001/jamapsychiatry.2017.3561.

Robinaugh DJ, Millner AJ, McNally RJ. Identifying highly influential nodes in the complicated grief network. J Abnorm Psychol. 2016;125(6):747–57 Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/abn0000181.

Papini S, Rubin M, Telch MJ, Smits JAJ, Hien DA. Pretreatment posttraumatic stress disorder symptom network metrics predict the strength of the association between node change and network change during treatment. J Trauma Stress. 2020;33(1):64–71. https://doi.org/10.1002/jts.22379.

Fried EI. Lack of theory building and testing impedes progress in the factor and network literature. Psychol Inq. 2020;31:271–88. https://doi.org/10.1080/1047840X.2020.1853461.

Law KC, Tucker RP. Repetitive negative thinking and suicide: a burgeoning literature with need for further exploration. Curr Opin Psychol. 2018;22:68–72 Available from: https://doi.org/10.1016/j.copsyc.2017.08.027.

Ducasse D, Loas G, Dassa D, Gramaglia C, Zeppegno P, Guillaume S, et al. Anhedonia is associated with suicidal ideation independently of depression: a meta-analysis. Depress Anxiety. 2018;35(5):382–92. https://doi.org/10.1002/da.22709.

Beck AT. Depression: clinical, experimental, and theoretical aspects. New York (Hoeber); 1967.

Roth A, Fonagy P. What works for whom?: a critical review of psychotherapy research. 2nd Edition. New York: Guilford Press; 2006.

Barlow DH, Allen LB, Choate ML. Toward a unified treatment for emotional disorders – republished article. Behav Ther. 2016;47(6):838–53 Available from: https://doi.org/10.1016/j.beth.2016.11.005.

Hvenegaard M, Moeller SB, Poulsen S, Gondan M, Grafton B, Austin SF, et al. Group rumination-focused cognitive-behavioural therapy (CBT) v. group CBT for depression: phase II trial. Psychol Med. 2020;50(1):11–9 Available from: https://www.taylorfrancis.com/books/9781000102147/chapters/10.4324/9781003076391-177.

Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci. 2017;12(6):1100–22. https://doi.org/10.1177/1745691617693393.

Williams DR, Rast P, Pericchi LR, Mulder J. Comparing Gaussian graphical models with the posterior predictive distribution and Bayesian model selection. Psychol Methods. 2020;25(5):653–72 Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/met0000254.

McManus S, Bebbington P, Jenkins R, Brugha T. Mental health and wellbeing in England: Adult Psychiatric Morbidity Survey 2014. Leeds: NHS Digital; 2016.

Mansueto AC, Wiers R, van Weert J, Schouten BC, Epskamp S. Investigating the feasibility of idiographic network models; 2020.

Buckman JEJ, Saunders R, O’Driscoll C, Cohen ZD, Stott J, Ambler G, et al. Is social support pre-treatment associated with prognosis for adults with depression in primary care? Acta Psychiatr Scand. 2021:acps.13285 Available from: https://onlinelibrary.wiley.com/doi/10.1111/acps.13285.

Hallquist MN, Wright AGC, Molenaar PCM. Problems with centrality measures in psychopathology symptom networks: why network psychometrics cannot escape psychometric theory. Multivariate Behav Res. 2019;0(0):1–25 Available from: https://doi.org/10.1080/00273171.2019.1640103.

Buckman JEJ, Cohen ZD, O’Driscoll C, Fried EI, Saunders R, Ambler G. . ., et al. Predicting prognosis for adults with depression using individual symptom data: a comparison of modelling approaches. 2020; Available from: https://doi.org/10.31219/osf.io/xkwdc

Steyerberg EW, Harrell FE. Prediction models need appropriate internal, internal–external, and external validation. J Clin Epidemiol. 2016;69(1):245–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0895435615001754. https://doi.org/10.1016/j.jclinepi.2015.04.005.

Kuyken W, Tsivrikos D. Therapist competence, comorbidity and cognitive-behavioral therapy for depression. Psychother Psychosom. 2008;78(1):42–8. https://doi.org/10.1159/000172619.