The importance of reaming the posterior femoral cortex before inserting lengthening nails and calculation of the amount of reaming

Journal of Orthopaedic Surgery and Research - Tập 11 - Trang 1-8 - 2016
Metin Kucukkaya1, Özgür Karakoyun2, Mehmet Fatih Erol2
1Department of Orthopedics and Traumatology, Istanbul Bilim University, Esentepe Sisli/Istanbul, Turkey
2Department of Orthopedics and Traumatology, Namık Kemal University, Suleymanpasa/Tekirdağ, Turkey

Tóm tắt

Lengthening nails have been used to correct limb length discrepancy caused by different etiologies, as well as for post-traumatic reasons. Two important lengthening nail-related complications are damage to the distraction mechanism and femoral fractures around the nail tip. As a result of the curved anatomy of the femur, straight nails impinge on the anterior cortex. Therefore, proper reshaping of the medullary canal to accommodate straight lengthening nails is crucial for the prevention of this problem. Reaming the dense posterior cortex is important when aiming to insert a lengthening nail without incurring anterior cortex nail tip impingement-related complications. Posterior femoral cortex over-reaming is a solution to this situation. Sixty patients received lengthening nails during 2008–2013, (ISKD, Fitbone, Precice). Posterior cortex rigid-reaming technique was used successfully in 45 retrograde femoral lengthening cases. The preoperatively planned posterior cortex amount was reamed until the impingement was overcome during the operation under fluoroscopic control for each case. Since the preoperative determination of posterior cortex reaming amount is time consuming and operator dependent, we evaluated the X-rays of the patients with computer software and conventional paper-based measurements. The effect of reaming the posterior cortical wall on the inclination of the nail tip to the anterior femoral cortex was detected with measurements on the preoperative and postoperative lateral femoral X-rays by using the CorelDRAW® Graphic Suite X6 software package (Corel, Inc., Ottawa, Ontario, Canada) software. On the same software, X-rays and the posterior reaming amount were also calculated. The mean age of the patients was 27 years (11–42), while the mean lengthening was 5.9 cm (2–14). The mean consolidation index was 1.05 (0.75–1.62), and the mean follow-up period was 31 months (range, 18–45 months). The mean distance of the osteotomy site to the intercondylar notch of the femur was 81.2 mm (±16.92). The mean displacement of the nail tip position was 15.42 mm (±4.77) on the measurements on the postoperative X-rays after nail insertion compared to the preoperative simulations on the templates. The mean posterior cortex reaming thickness was 3.68 mm (±1.02). We derived a formula that allows the required amount of optimal posterior cortex reaming to be determined. No impingement-related complications or nail damage were observed.

Tài liệu tham khảo

Thaller PH, Furmetz J, Wolf F, Eilers T, Mutschler W. Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX((R)))-preliminary results. Injury. 2014;45 Suppl 1:S60–5. Singh S, Lahiri A, Iqbal M. The results of limb lengthening by callus distraction using an extending intramedullary nail (Fitbone) in non-traumatic disorders. J Bone Joint Surg. 2006;88(7):938–42. Kucukkaya M, Karakoyun O, Sokucu S, Soydan R. Femoral lengthening and deformity correction using the Fitbone motorized lengthening nail. J Orthop Sci. 2015;20(1):149–54. Horn J, Grimsrud O, Dagsgard AH, Huhnstock S, Steen H. Femoral lengthening with a motorized intramedullary nail. Acta Orthop. 2015;86(2):248–56. Buford Jr WL, Turnbow BJ, Gugala Z, Lindsey RW. Three-dimensional computed tomography-based modeling of sagittal cadaveric femoral bowing and implications for intramedullary nailing. J Orthop Trauma. 2014;28(1):10–6. Kanawati AJ, Jang B, McGee R, Sungaran J. The influence of entry point and radius of curvature on femoral intramedullary nail position in the distal femur. The Journal of orthopaedics. 2014;11(2):68–71.